Phases and Processes in the ISM

Bruce G. Elmegreen IBM Research Division Cambridge, July 13, 2005

M51

Spitzer

Overview

- Phases: temperatures, densities, pressures
- Structures: clouds, shells, filaments, fractals
- Origins: instabilities, explosions, density waves, turbulence
- Star formation follows
 dense cloud formation
- Great Observatories: close-up views

IC 1396 Spitzer

In the thermal 60's, our understanding of heating and cooling processes for the atomic ISM led to the concept of ISM "phases."

&

Optical and HI observations of absorption and emission led to the concept of "clouds."

THEN,

In the explosive 70's, a hot phase was added after the prevalence of supernova was appreciated.

&

A molecular phase was also added in the 70's after Penzias & Wilson's discovery of mm-wave line emission.

Dalgarno & McCray '72

Heiles' 5 phases (2000, 4th Tetons conference)

- Hot ionized medium: T~10⁷K, P/k>20000, n~0.003, f~0.5, shock-heated
- Reynolds' warm ionized medium: T~8000K, P/k>3400, n~0.08, f~0.1, from OB stars
- Warm neutral med.: T~500-8000K, P/k~200-4000, n~0.1-0.4, f~0.5; multiple sources
- McKee-Ostriker warm ionized medium: T,P,n,f same; multiple heat sources
- Cold neutral medium: T~10-75K, P/k~1500-10000, n~20-250, f~0.01, C ionization
- (plus cold, molecular & self-gravitating: $T \sim 10-25K$, $P/k \sim 10^5-10^6$, $n > 10^3$, $f \sim 0.01$)

A high fraction of the WNM is at a temperature that should be thermally unstable.

Phases and Pressure Variations in a Turbulent ISM

- P variations: high in some regions (Oey & Garcia-Segura 04 from superbubble growth; Jenkins & Tripp 01 from CI fine-structure)
- Halo flows regulate midplane P, so filling factor_{hot}~SNR^{0.363} and is generally small (17% for galactic SNR) – deAvillez & Breitschwerdt '04

Molecular phases: Shielding, Self-gravity

Radial profiles in galaxies

- CO/HI decreases with distance (e.g. Heyer et al. '04, Blitz et al. '04 for M33; ... Sofue et al '95)
 - lower P and Z make proportionally less diffuse molecular gas
- Thermal temp of cool diffuse HI gas increases slightly with distance (Braun '95, '97).
 - lower Z decreases coolants
- Fraction of HI in cool diffuse phase decreases with distance (Dickey et al. 1990; Braun '97)
 - low P, coolants favors warm equilibrium phase of HI
- Extragalactic ionization cuts off outer HI disk at N~10^{19.5} cm⁻² (Maloney 93, Corbelli & Slapeter 94, Dove & Shull 94)
- Filling factor of hot gas increases with z
 - fountains, superwinds, greater scale height of hot gas
- Turbulent velocity dispersion decreases with distance (Boulanger \& Viallefond 1992).

This watermark does not appear in the registered version - http://www.clicktoconvert.com

How do these generalities hold up under detailed inspection using HST, Spitzer, and Chandra?

M51, Spitzer 3.6, 4.5, 5.8, 8.0 mu

M51, HST

M51, HST: central disk

high shear, tidal forces, sub-threshold N, strong radiation field, what makes holes? ambient radiation pressure? stellar winds? turbulence?

M51, HST western spur

M51, HST western outer arm

M51, HST southern middle arm

M51, HST eastern spur

M51, HST northern middle arm

M51, HST tidal arms

Ν

S

Arm to arm sequence:

- 1. dust lane formation
- 2. dust lane collapse
- 3. downstream feathering
- 4. cloudy debris
- 5. shell formation
- 6. diffuse clouds

Dark clouds in HST are emission regions at IR

M51, Spitzer Legacy 3.6, 4.5, 5.8, 8.0 microns

Lingering SF or triggering in debris fields

Spiral Galaxy NGC 3370

Hubble Heritage

NASA, The Hubble Heritage Team and A. Riess (STScI) • Hubble Space Telescope ACS • STScI-PRC03-24

Galaxies without 2 arm spirals usually have low disk/halo mass ratios

PRC99-25 · Hubble Space Telescope WFPC2 · Hubble Heritage Team (AURA/STScI/NASA)

Barred Spiral Galaxy NGC 1300

NGC 1300 center ring at bar resonance

Dust lane much more open. Gas density lower. Little feathering.

N1300 outside corotation.

NGC 1300 inner dust lanes diffuse because of shear and tidal forces

Enhanced SF at end of bar.

crowding effect?

co-rotation effect?

M101: optical and Chandra x-ray is patchy, follows star formation

X-ray emission from nuclear region of interacting galaxy NGC 7714

-SNR possible energy source -superwind evident -2nd pt source in nucleus ~ SSC

(Smith, Struck & Nowak 05)

CHANDRA images

A study of XR and SF in 6 dwarf galaxies (Ott, Walter, Brinks 05) shows a correlation between them

SF regions also contain XR point sources in proportion to the SFR

The XR emission suggests a superwind

Conclusions

- ISM "phase" depends on thermal heating and cooling
 - starlight, atomic/molecular processes, grains, shocks, cosmic rays, ...
- ISM "structure" depends on its motion, which is generated by different energy sources than its "phase"
 - supernovae, self-gravity, ionization, turbulence, spiral arms, ...
- ISM structure varies within a galaxy and from galaxy to galaxy
 - SDW-dominated galaxies produce lots of spiral filaments and timed evolution of young stars (SDW triggering, dispersal, debris triggering...)
 - Barred galaxies produce end-of-bar enhancements, inner rings, corotation stagnation zones, stable bar dust lanes etc.
 - P,n,N,Z,G_{uv},B, ..., K ... variations determine ease of conversion of ISM gas from diffuse to self-gravitating to stars.
 - above the Toomre/Kennicutt threshold, SF is easy, unavoidable, and as fast as possible, i.e., always at the dynamical rate → Schmidt n^{1.5} law.
- Great Observatories see structure (HST), thermal states and embedded stars (*Spitzer*), hot gas and hot energy sources (*Chandra*)