Using an Exposure Map in Fitting Image Data

Sherpa Threads (CIAO 3.4)

Table of Contents

- <u>Getting Started</u>
- <u>Reading and Plotting 2-D FITS Data</u>
- <u>Setting the Exposure Map</u>
- <u>Defining and Fitting the Source</u>
- <u>Saving a Sherpa Session</u>
- <u>Summary</u>
- <u>History</u>
- Images
 - ♦ <u>Surface plot of the data</u>
 - ♦ Fit and absolute residuals
 - ♦ Fit and sigma residuals

Using an Exposure Map in Fitting Image Data

Sherpa Threads

Overview

Last Update: 1 Dec 2006 - reviewed for CIAO 3.4: no changes

Synopsis:

This thread shows how to use an exposure map when fitting 2–D spatial data. The exposure map file is input to *Sherpa* through the file–based exposure map model (<u>FEXPMAP</u>).

Proceed to the <u>HTML</u> or hardcopy (PDF: <u>A4 / letter</u>) version of the thread.

Getting Started

Please follow the "Sherpa Threads: Getting Started" thread.

Reading and Plotting 2–D FITS Data

We are using 2–D spatial data from the FITS datafile img.fits. This dataset is input into *Sherpa* with the DATA command:

```
sherpa> <u>DATA</u> img.fits
```

The dataset may be viewed as a <u>contour plot</u>, <u>surface plot</u> or an <u>image</u>. Here we show the surface plot method, creating a postscript file of the output as well:

```
sherpa> <u>SPLOT</u> DATA
sherpa> <u>PRINT</u> POSTFILE splot.ps
```

This creates Figure 1 00.

Setting the Exposure Map

The following is similar to the process of defining responses for spectral data, where a 1–D instrument model (\underline{RSP}) is defined and set as the <u>instrument</u>.

We define the exposure map model:

```
sherpa> <u>FEXPMAP</u>[emap]
emap.file parameter value ["none"] expmap.fits
```

emap.nor	cm	parameter	V	ralue	[1
sherpa>	IN	ISTRUMENT :	=	emap	

To display the status of the model emap, use the SHOW command. Note that FEXPMAP is an alternate name for FARF2D; *Sherpa* identifies it by the latter:

she far	rpa> <u>SHO</u> f2d[emag	<u>)W</u> emap				
	Param	Туре	Value	Min	Max	Units
1	file s	string:	"expmap.fits"			
2	norm f	rozen	1	0	1000	

]

The normalization (norm) is frozen at 1, since the exposure map is normalized to the exposure time of the image; this is how all exposure maps are generated in the <u>CIAO exposure map threads</u>.

Defining and Fitting the Source

One can now define a model to be used as a source model. After viewing <u>Figure 1</u> and the <u>BETA2D</u> model is found to be a promising candidate for the source. Since we want to set the initial values, we leave on the <u>parameter prompting</u>:

sherpa> <u>BETA2D</u> [bm]
bm.r0 parameter value [80] 30
bm.xpos parameter value [36.5] 40
bm.ypos parameter value [41.5] 40
bm.ellip parameter value [0] 0.3
bm.theta parameter value [0] 5
bm.ampl parameter value [1.51294] 3.0
bm.alpha parameter value [1] 1.5
sherpa> THAW bm.ellip bm.theta

The BETA2D model is defined for the source, then the data is fit:

```
sherpa> SOURCE = bm
sherpa> FIT
LVMQT: V2.0
LVMQT: initial statistic value = 4.88095e+06
LVMQT: final statistic value = 3255.75 at iteration 11
            bm.r0 12.4624
            bm.xpos 39.5139
            bm.ypos 40.8959
            bm.ellip 0.0259204
            bm.theta 4.72828
            bm.ampl 1.31312
            bm.alpha 1.66641
```

To display the fit and residuals of the plot, we again use <u>SPLOT</u>:

sherpa> <u>SPLOT</u> 2 SOURCE RESIDUALS

where <u>RESIDUALS</u> refers to the absolute residuals, calculated as (data - model). This creates <u>Figure</u> 2

Alternately, use <u>DELCHI</u>, the sigma residuals of the fit; these are calculated as ((data - model)/error):

sherpa> <u>SPLOT</u> 2 SOURCE DELCHI as shown in <u>Figure 3</u>

Saving a Sherpa Session

To save the Sherpa session:

sherpa> <u>SAVE</u> ALL expmap.shp

where expmap.shp is the output ASCII file. The information is written in the form of a *Sherpa* script. The <u>USE</u> command will restore the session when desired.

The source (unconvolved model amplitudes), model (convolved model amplitudes), and residuals may all be written out in FITS format with the <u>WRITE</u> command:

```
sherpa> WRITE SOURCE expmap_source.fits
Write X-Axes: (Bin,Bin) Y-Axis: Amplitude (Photons/bin)
sherpa> WRITE MODEL expmap_model.fits
Write X-Axes: (Bin,Bin) Y-Axis: Counts
sherpa> WRITE RESIDUALS expmap_residuals.fits
Write X-Axes: (Bin,Bin) Y-Axis: Counts
```

The output may be examined as any standard FITS file, e.g. with *prism*, ds9, or <u>dmlist</u>.

Summary

This thread is complete, so we can exit the Sherpa session:

sherpa> <u>E</u>	XIT
Goodbye.	

History

14 Jan 2005 reviewed for CIAO 3.2: no changes

21 Dec 2005 reviewed for CIAO 3.3: no changes

01 Dec 2006 reviewed for CIAO 3.4: no changes

URL: http://cxc.harvard.edu/sherpa/threads/expmap/

Last modified: 1 Dec 2006

