
URL: http://cxc.harvard.edu/sherpa3.4/methods/advice.html
Last modified: 16 January 2007

Advice on Minimization Methods
Return to: Optimization Methods Index

Contents

Introduction• 
Single−shot techniques• 
Scatter−shot techniques• 
Summary and best−buy strategies• 
Acknowledgements• 

The Sherpa Optimization Methods page describes each optimization method in detail.

Introduction

The minimization of mathematical functions is a difficult operation. A general function f(x) of vector argument x
may have many isolated local minima, non−isolated minimum hypersurfaces, or even more complicated
topologies. No finite minimization routine can guarantee to locate the unique, global, minimum of f(x) without
being fed intimate knowledge about the function by the user.

This does not mean that minimization is a hopeless task. For many problems there are techniques which will
locate a local minimum which may be "close enough" to the global minimum, and there are techniques which will
find the global minimum a large fraction of the time (in a probabilistic sense). However, the reader should be
aware of my philosophy is that there is no "best" algorithm for finding the minimum of a general function.
Instead, Sherpa provides tools which will allow the user to look at the overall behavior of the function and find
plausible local minima, will often contain the physically−meaningful minimum in the types of problem with
which Sherpa deals.

In general, the best assurance that the correct minimum has been found in a particular calculation is careful
examination of the nature of the solution (e.g., by plotting a fitted function over data), and some confidence that
the full region that the minimum may lie in has been well searched by the algorithm used. This document seeks to
give the reader some information about what the different choices of algorithm will mean in terms of run−time
and confidence of locating a good minimum.

Some points to take away from the discussions in the rest of this document.

Never accept the result of a minimization using a single optimization run; always test the minimum using
a different method.

1. 

Check that the result of the minimization does not have parameter values at the edges of the parameter
space. If this happens, then the fit must be disregarded since the minimum lies outside the space that has
been searched, or the minimization missed the minimum.

2. 

Advice on Minimization Methods − CIAO 3.4

Advice on Minimization Methods 1

http://cxc.harvard.edu/sherpa3.4/methods/advice.html


Get a feel for the range of values of the target function (in Sherpa, this is the fit statistic), and the stability
of the solution, by starting the minimization from several different parameter values.

3. 

Always check that the minimum "looks right" using a plotting tool.4. 

Sherpa contains two types of routine for minimizing a fit statistic. I will call them the "single−shot" routines,
which start from a guessed set of parameters, and then try to improve the parameters in a continuous fashion, and
the "scatter−shot" routines, which try to look at parameters over the entire permitted hypervolume to see if there
are better minima than near the starting guessed set of parameters.

Single−shot techniques

As the reader might expect, the single−shot routines are relatively quick, but depend critically on the guessed
initial parameter values x0 being near (in some sense) to the minimum xmin. All the single−shot routines
investigate the local behaviour of the function near x0, and then make a guess at the best direction and distance to
move to find a better minimum. After testing at the new point, they accept that point as the next guess, x1, if the fit
statistic is smaller than at the first point, and modify the search procedure if it isn't smaller. The routines continue
to run until either

all search directions result in an increased value of the fit statistic;1. 
an excessive number of steps have been taken; or2. 
something strange happens to the fit statistic (e.g., it turns out to be discontinuous in some horrible way).3. 

This description indicates that for the single−shot routines, there is a considerable emphasis on the initial search
position, x0, being reasonable. It may also be apparent that the values of these parameters should be moderate;
neither too small (10−12, say), nor too large (1012, say). This is because the initial choice of step size in moving
from x0 towards the next improved set of parameters, x1, is based on the change in the fit statistic, f(x) as
components of x are varied by amounts . If f varies little as x is varied by this amount, then the calculation of
the distance to move to reach the next root may be inaccurate. On the other hand, if f has a lot of structure (several
maxima and minima) as x is varied by the initial step size, then these single−shot minimizers may mistakenly
jump entirely over the "interesting" region of parameter space.

These considerations suggest that the user should arrange that the search vector is scaled so that the range of
parameter space to be searched is neither too large nor too small. To take a concrete example, it would not be a
good idea to have x7 parameterize NH in a spectral fit, with an initial guess of 1020, and a search range 1016 to 1024

(units assumed to be cm−2). The minimizers will look for variations in the fit statistic as NH is varied by 1 cm−2,
and finding none (to the rounding accuracy likely for the code), will conclude that x7 is close to being a null
parameter and can be ignored in the fitting. It would be much better to have x7 = log10 (NH), with a search range of
16 − 24. Significant variations in the fit statistic will occur as x7 is varied by ±1, and the code has a reasonable
chance of finding a useful solution.

Bearing this in mind, the single−shot minimizers in Sherpa are:

Powell This method is described in some detail by Press et al. (1986). It is basically a censored
maximum−gradients technique which, starting from a first guess, moves towards a minimum by finding a
good direction in which to move, and calculating a sensible distance to go. Its principal drawback is that
to calculate the distance to move it has to make some assumptions about how large a step size to take, and
hence there is an implicit assumption that the search space is reasonably well scaled (to ±10 units in each
of the search directions, say). It is also important that in finding these gradients, the steps do not miss a lot
of important structure; there should not be too many subsidiary minima. It is possible for the Powell
technique to become trapped in subsidiary minima, and it is possible for it to skip entirely over a

• 

Advice on Minimization Methods − CIAO 3.4

2 Single−shot techniques



minimum. However, if the initial set of parameters is not too far from the true minimum, Powell will
usually do a good job of refining the parameter estimates. Thus Powell is a good technique for refining a
set of parameters to reach a nearby local or global minimum, but a bad technique for finding a global
minimum of a complicated search space.
Simplex This technique creates a polyhedral search element around the initial position, x0, and then grows
or shrinks in particular directions while crawling around parameter space, to try to place a minimum
within the final search polyhedron. This technique has some hilarious ways of getting stuck in
high−dimension parameter spaces (where the polyhedron can become a strange shape), but is very good
at finding minima in regions where the fit statistic has a moderately well−defined topology. Since it
works in a different way than Powell minimization, a good strategy is to combine Simplex and Powell
minimization to test whether an apparent minimum found by one technique is stable when searched by
the other. I regard Simplex searching as good in smooth and simple parameter spaces, particularly when
looking at regions where the fit statistic depends on a parameter in a linear or parabolic fashion, and bad
where surfaces of equal value of the fit statistic are complicated. In either case, it is essential that the
initial size of the polyhedron (with sides of length 1 unit) is a smallish fraction of the search space.

• 

Levenberg−Marquardt This resembles an improved Powell minimization, constructing good search
directions and distances to move based on the shape of the target function near the initial guessed
minimum, x0, and then progressively moving towards the dominant local minimum. The refinement over
Powell minimization is that this technique uses information about the local curvature of the fit statistic as
well as its local gradients, and this tends to stabilize the result in some cases. I regard the techniques
implemented in Sherpa as being good minimum−refiners for simple local topologies, since more
assumptions about topology are made than in the Simplex or Powell methods, but bad at finding global
minima for target functions with complicated topologies.

• 

Scatter−shot techniques

Although a bit ad hoc, these techniques attempt to locate a decent minimum over the entire range of the search
parameter space. Because they involve searching a lot of the parameter space, they involve many function
evaluations, and are somewhere between quite slow and incredibly tediously slow.

The scatter−shot routines are:

Grid This routine simply searches a grid in each of the search parameters. The coarseness of the grid sets
how precise a root will be found. If, for example, there are 4 parameters to be searched (i.e., x is a vector
of dimension 4), then with 131072 grid points (the default), there will be 19 sample points on each axis of
the 4−D search space, and so the accuracy of estimation of each parameter will be roughly 0.06 of the
range of the axis in that parameter. If the fit statistic has significant structure on a smaller scale, then the
grid−searcher will miss it completely. This is a good technique for finding an approximation to the
minimum for a slowly−varying function. It is a bad technique for getting accurate estimates of the
location of a minimum, or for examining a fit statistic with lots of subsidiary maxima and minima within
the search space.

• 

Monte Carlo This is even simpler than the grid−search routine. A certain number of random samples of
the target function are made, with each element of the test parameter vector, x, sampled uniformly from
the specified search range. Clearly this routine is probabilistic; even for a smoothly−varying target
function, there is a chance that no sample will lie particularly close to the minimum. On the other hand,
for a function with unknown properties, this technique does give a chance of finding a minimum even in
some part of parameter space that might not be thought of in the first place. Again, this is a good
technique for finding rough minima for slowly−varying functions, and a bad technique for getting
accurate minima, or minima for functions with a lot of structure in the search space.

• 

Advice on Minimization Methods − CIAO 3.4

Scatter−shot techniques 3



Monte−Powell This technique attempts to cope with complicated functions by looking for minima near a
large number of randomly−selected locations within the designated search space. It turns out that this is
surprisingly good at finding the global minimum of even quite complicated functions provided that
enough initial start points are chosen. Difficulties may be encountered if the global minimum is in a very
small part of parameter space (i.e., if the minimum is very sharp), while there are other, shallower,
minima which occupy a larger fraction of the parameter space and which are likely to capture the Powell
minimizations. Thus this is a good technique for many functions, and tends to be bad only for functions
which are genuinely difficult anyway. It is my personal favorite for exploring a new function about which
I know rather little, because it makes no special assumptions about the target function, but it is rather
inefficient since many function evaluations are far from the center of parameter space.

• 

Grid−Powell This is similar to Monte−Powell, except that a regular grid of points is searched, rather than
allowing a probabilistic sampling of the parameter space. For low−dimension spaces (i.e. small number of
parameters) in which there is rather little structure this may be good, but for higher−dimension spaces (i.e.
large number of parameters) the sampling of the grid becomes unacceptably coarse and finding the
correct global minimum can be a considerable fluke (worse even than in Monte−Powell) because many of
the function evaluations are forced to lie at the edge of the parameter space, relatively far from the
guessed minimum. Thus, for example, if an 8−D space is to be sampled, there are only 4 samples on each
axis, and if the fit statistic has significant structure on the scale of a quarter of any one of the search
parameters, it is likely that the global minimum will be missed. I regard Grid−Powell as a good method
for functions where I know enough about the function that I can bracket the minimum with some
certainty, but a bad technique for high−dimension minimizations.

• 

Simulated Annealing There are four such methods available in Sherpa. All are statistical methods for
trying to find a global minimum in a complicated parameter space. The details of the various simulated
annealing techniques are given in SIMUL−ANN−1 and SIMUL−ANN−2. Basically these methods make
considerable improvements on the Monte Carlo technique, by spending fewer function evaluations in
unproductive bits of parameter space (where the target function is far from the minimum), and more
function evaluations near the minimum. The way this is done borrows some techniques from statistical
mechanics, but the essential detail is that this is a conditioned probabilistic approach to finding the
minimum. It tends to be good at finding an answer which is fairly close to the global minimum, but it is
bad in that all four the simulated annealing methods use tremendous amounts of CPU time. These
techniques are a high order of overkill in relatively simple minimization problems, but for truly difficult
problems where the user has little or no idea what the real answer is, they provide a brute−force way of
getting an answer which is fairly reliable. The techniques that combine Powell minimization with
simulated annealing tend to be better than the pure simulated annealing methods; they produce better
estimates of the minima.

• 

Summary and best−buy strategies

Overall, the single−shot methods are best regarded as ways of refining minima located in other ways: from good
starting guesses, or from the scatter−shot techniques. Using intelligence to come up with a good first−guess
solution is the best approach, when the single−shot refiners can be used to get accurate values for the parameters
at the minimum. However, I would certainly recommend running at least a second single−shot minimizer after the
first, to get some indication that one set of assumptions about the shape of the minimum is not compromising the
solution. It is probably best if the code rescales the parameter range between minimizations, so that a completely
different sampling of the function near the trial minimum is being made.

Since they tend to be slow, repeated rescaled runs are rarely possible with the scatter−shot minimizers. For most
relatively well−behaved functions where quality control over the estimated parameters is being made by an
intelligent user, I would recommend running Monte−Powell or Grid−Powell and then testing the minimum using
the Simplex or Levenberg−Marquardt routines. If an automatic minimum−finder is being written, then I would

Advice on Minimization Methods − CIAO 3.4

4 Summary and best−buy strategies



run the scatter−shot minimizer at least twice, with the second run using a restricted range of search space around
the minimum from the first, and then test the minimum using single−shot minimizers. For functions where little is
known about their properties, or for problems where the user has an almost unlimited CPU time available to reach
the "right" answer, I would use one of the simulated annealing plus Powell minimizers, follow up with a
Grid−Powell minimizer, and then finish off with a Simplex or Levenberg−Marquardt minimizer. Even then, I
wouldn't believe the solution until I'd looked at it pretty carefully: there are plenty of rogue functions out there!

Class of Technique Type Speed Commentary

Powell single−shot fast OK for refining minima

Simplex single−shot fast OK for refining minima

Levenberg−Marquardt single−shot fast OK for refining minima

Grid scatter−shot slowish
OK for smooth functions, grid−quantized minima, quad may
need fine grid.

Monte Carlo scatter−shot slowish
OK for smooth functions, quad only gives rough minima,
quad usually needs many random start points.

Monte−Powell scatter−shot slowish
OK for many functions, quad usually needs many random
start points.

Grid−Powell scatter−shot slowish OK for smooth functions, quad may need fine grid.

Simulated annealing scatter−shot
very
slow

Good in many cases, quad use if desperate measures are
needed.

Acknowledgements

The contents of this document are taken from a memo written by Mark Birkinshaw (1998).

The Chandra X−Ray Center (CXC) is operated for NASA by the Smithsonian
Astrophysical Observatory.
60 Garden Street, Cambridge, MA 02138 USA.
Smithsonian Institution, Copyright © 1998−2006. All rights reserved.

URL:
http://cxc.harvard.edu/sherpa3.4/methods/advice.html

Last modified: 16 January 2007

Advice on Minimization Methods − CIAO 3.4

Acknowledgements 5

http://cxc.harvard.edu/sherpa3.4/methods/advice.html


Advice on Minimization Methods − CIAO 3.4

6 Acknowledgements


