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1.1 Introduction

Why do we need statistic? Wall and Jenkins (2003) give a good description

of the scientific analysis and answer this question. Statistic allows us to take

decisions in Science, evaluate observations, models, formulate questions and

proceed forward with investigations. The statistic is needed at every step

of our scientific analysis. Statistic is a quantity that summarized the data

(mean, averages etc.) and astronomers cannot avoid statistics.

Here is a question asked by an X-ray astronomy school student:

“I wanted to know how many counts would be needed to get a good fit for a

CIE plasma model with every parameter (save redshift) free. I discussed this

topic with Randall Smith once who told me it took 500-1000 counts to get a

decent fit, but I couldn’t remember if this assumed that metallicity is fixed.

Can someone get a good fit for metallicity with low counts (e.g. 500-1000)?”

However, what does it mean “a good fit” or ‘a ‘decent fit”, and what does

constitute “low counts” data? These expressions carry a certain meaning,

but taken out of context are not precise enough. Are we asking whether a

total number of counts in the spectrum is “low” or a number of counts per

resolution element is “low”? In the question about a total number of counts

500-1000 seems “high”, but it is considered “low” if we take a number of

total counts and divide by a resolution element (for example there are 1024

independent detector channels in a Chandra ACIS spectrum). Also “high”

is relative to a scientific question we pose and a type of the considered

model. For example a simple power law model of a continuum could be well

constrained by a Chandra spectrum with 500-1000 counts, but probably not

a plasma model.
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1.2 Probability Distributions

Probability is a quantity that describes a fraction of favorable events and it

is a numerical measure of our belief. Laplace principle of indifference states

that all events have equal probability. The Kolmogorov axioms give a base

for the probability theory:

• Any random event, A, has a probability 0 < P (A) < 1

• A probability of a sure event is equal to 1, P (A) = 1

• If A and B are exclusive events then P(AB)= P(A)+P(B)

The probability distribution is a function describing a probability of an

event given a total number of events. If x is a continuous random variable

then f(x) is its probability density function or simply probability distribution

when:

(1) prob(a < x < b) =
∫ b
a f(x)dx

(2)
∫ ∞
−∞ f(x)dx = 1

(3) f(x) is a single non-negative number for all real x.

The two most widely used in X-rays probability distributions are Poisson

and Gaussian distributions.

• Poisson probability:

P(n;µ) =
e−µµn

n!
(1.1)

where µ is the mean of the distribution, e.g. a “count rate” - an average

of number of photons received from a source per unit time (out of total

number of emitted photons), P(n;µ) describes then the probability of

receiving n photons in a given exposure time.

• Gaussian probability, normal distribution:

N (n;µ, σ) =
1

σ
√

2π
exp

[

−(n − µ)2

2σ2

]

(1.2)

where µ is the mean of the distribution, σ is the variance, N (n;µ, σ)

describes the probability of receiving n photons.
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1.3 Bayesian and Classical Methods

There are two main schools in Statistics: Bayesian and Classical. They

differ in the basic assumptions, treatment of probabilities and philosophy.

Classical or frequentist methods calculate a probability of the data given a

model. Bayesian methods calculate a probability of the model given the

data and use prior knowledge about the source, experiments etc. to assess

the probability.

1.4 What do we really do in the analysis of X-ray data?

Section ??† describes some main concepts of spectral fitting in X-ray astron-

omy. The instruments’ characteristics stored in calibration files are explicitly

included in the X-ray data analysis. To evaluate the expected model counts

a physical model of an X-ray emitting source, m(E) is ’convolved’ with the

calibration data (most commonly defined by a redistribution matrix, RMF

file, r(E, i) and an effective area of the X-ray telescope, ARF file, a(E)).

Mi =

∫

r(E, i) a(E)m(E)dE (1.3)

The predicted model counts Mi in a detector channel i are then compared

to the observed counts. In order to understand how well the physical model

describes the data we need statistic - a variable characterizing the property

of the model in respect to the observed data. Typically χ2 statistic is used,

because it gives a ’goodness-of-fit’ and because the X-ray data are usually

binned (see below for methods in unbinned data). Note that χ2 statistic is

a random variable with the χ2 distribution.

χ2 =
∑

i

(Di − Mi)
2

σ2
i

(1.4)

where σ2
i is the variance. In Pearson’s (1900) classical paper σ2

i is defined in

respect to the model predicted counts Mi and it is assumed that the observed

data come from the normal distribution. However, with a limited number

of observed counts χ2 applications can be restricted or even biased as we

show in an example below. Variety of weighting of this basic formula has

been defined to accommodate X-ray low counts observations (i.e. Gehrels,

Churazov, Primini).

In the parameterized approach, the model parameters are varied during

† Keith on X-ray fitting
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the ’fit’ process (minimization, optimization) to obtain the best fit parame-

ters, e.g. the parameters that minimize the χ2 statistics and best describe

the observations. These parameters give also the minimum difference be-

tween the model predicted counts and the observed number of counts.

The model parameter space is an N-dimensional space with a number of

parameters defining its dimension. Note that for a different model expression

the parameter space is different and could be completely disjoined from the

other one. Note, however the importance of the nested models where a

simpler model is nested within a more complex model

The best fit parameters define just one point in that model parameter

space. Is this the only physical model describing the observed source? We

can only answer this question in terms of probabilities. Because X-ray data

are Poisson distributed there is a “Poisson” noise inherently present in the

data. How this noise affects our determination of the best fit parameters?

The uncertainty associated with the statistical noise propagates into the

way we determine the parameters and the best fit parameters have a range

of acceptable values. There are many physical models that can explain

observations. The statistics helps to constrain the ranges of the acceptable

parameter space. However, there is no single answer and we can only obtain

the probability quantifying a chance of the physical model that can describe

the observations.

1.5 Maximum Likelihood

Probability density function f(X,Θ), where X describes the X-ray data

and Θ model parameters, is the Poisson probability because of the Poisson

nature of the X-ray data. We want to estimate Θ. If X1,X2...,XN are the

X-ray data, independent and drawn from the Poisson distribution P then

the likelihood function is:

L(X1,X2, ....XN ) = P(X1,X2, ...XN |Θ) (1.5)

= P(X1|Θ)P(X2|Θ)....P(XN |Θ) (1.6)

=
N
∏

P(Xi | Θ) (1.7)

Finding the maximum likelihood means finding the parameter Θ0 that

maximizes the likelihood function.

Below, I use an example to illustrate the maximum likelihood method

in the X-ray spectral analysis. An X-ray spectrum is often modeled as a
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power law function m(E) = AE−Γ, where A is the normalization in pho-

tons cm2 sec keV, E is photon energy and Γ is the photon index. Then the

predicted number of counts Mi in i detector channel is defined by

Mi =

∫

r(E, i) a(E)AE−ΓdE (1.8)

This integral can be solved in XSPEC or Sherpa to calculate model pre-

dicted counts Mi for a given values of the parameters (A,Γ). Assum-

ing Chandra ACIS calibration data and the power law parameters A =

0.001 photons/cm2/sec/keV and Γ = 2 the model predicted counts in the

ACIS channels i = (10, 100, 200) are estimated to be Mi = (10.7, 508.9, 75.5).

The Poisson likelihood for the observed counts Xi=(15,520,74) is then:

L(Xi) =
N
∏

P(Xi | Mi(A,Γ)) (1.9)

= P(15 | 10.7)P(520 | 508.9)P(74 | 75.5) (1.10)

= 0.116 (1.11)

here we used the Incomplete Gamma function Γ(Xi,Mi) to calculate indi-

vidual Poisson probabilities given the observed data in these three channels.

An observed X-ray spectrum has many channels and the model needs to

be evaluated in all the detector channels. Finding the maximum likelihood

means finding the best set of parameters (A,Γ) that maximize the Poisson

likelihood function for the assumed model. For an assumed distribution of

parameters one can “sample” the parameters (Aj ,Γj) many times, calculate

the likelihood and choose the parameters that give the maximum value of L.

Many numerical methods have been developed to make such iterative process

the most efficient. Van Dyk et al (2001) describe Monte Carlo algorithms

specific to X-rays spectra.

In many applications a log-likelihood approach is used. Taking a natural

log of the Poisson likelihood and using a simple algebra gives:

lnL =
∑

i

(Xi ln Mi − Mi − ln Xi!) (1.12)

Cash (1979) defined the C-statistics using this log-likelihood function and

multiplying it by -2.

C = −2 lnL =
∑

i

(Xi ln Mi − Mi − ln Xi!) (1.13)
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Because during the optimization process the difference between the val-

ues of the C-statistics is being used the term ln Xi! cancels out as it is

independent on the parameters. Thus the C-statistics in the following form

is minimized:

C = 2
N

∑

i

(Mi − Xi ln Mi) (1.14)

Note that χ2 statistics is also the maximum likelihood estimator. It is

derived from the log-likelihood when the assumed underlying distribution is

Gaussian (see Eq. XX for N (Xi|Mi)):

L(X1,X2, ....XN ) =
N
∏

i

N (Xi|Mi) (1.15)

lnL =
N

∑

i

(Xi − Mi)
2

2σ2
i

(1.16)

1.6 Confidence Limits

Maximum likelihood estimators such as C-statistics or χ2 are used to find

the best parameters for the X-ray data. But how well do we know model

parameters? This depends on the quality of the data, e.g. signal-to-noise,

total number of counts etc. The data constrain the model parameters and

after finding the best fit parameters one needs to estimate the confidence

level for these parameters.

Avni (1976) defined the confidence region with the significance level α

and a number degrees of freedom ν = N − 1 − j (N - number of channels, j

- number of parameter)

χ2(α) = χ2
min + ∆(ν, α) (1.17)

For example the significance of 90% corresponds to ∆ = 2.71 of the χ2

difference above the minimum for one parameter. In practice calculating

the parameter value that corresponds to this confidence level (or any other)

could be numerically intensive, as it requires a parameter search around the

best fit minimum.
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Fig. 1.1. Distributions of a photon index parame Γ obtained by fitting simulated
X-ray spectra with 60000 counts and using the three different statistics: χ2 with
model variance, χ2 with data variance and Cash statistics.

1.7 Statistical Issues

1.7.1 Bias

The χ2 bias can affect the results of the X-ray spectral fitting and it can be

demonstrated in a simple way. The described simulations can be done in

Sherpa or XSPEC.

We assume an absorbed power law model with the sets of 3 parameters

(an absorption column, a photon index, and a normalization) to simulate

Chandra X-ray spectrum given the instrument calibration files (RMF/ARF)

and the Poisson noise. The resulting simulated X-ray spectrum contains the

model predicted counts with the Poisson noise. This spectrum is then fit

with the absorbed power law model to get the best fit parameter values for

NH, photon index and normalization.

We simulated 1000 spectra and fit each of them using different statistics:

χ2 with data variance, χ2 with model variance and Cash/C-statistics. Fig-
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ure 1.1 shows the distribution of the photon index parameter obtain from the

fit of the high signal to noise spectra generated for the assumed simulated

value of 1.267. The χ2 bias is evident in this analysis. While C-statistics

based on the Poisson likelihood behave well χ2 with model variance under-

estimates the simulated value and χ2 with data variance overestimates this

parameter.

1.7.2 Background, Source Detection and Spectral Analysis.

X-ray data are collected as individual events. Both source and background

counts are contained within the assumed source region matched to the point

spread function of the detector and the background contribution needs to

be accounted for in the analysis. In the high counts situation with low

background contribution the background is typically subtracted and the

error propagated according to the standard theory.

S = C − AStS

ABtB
B

where S is the source counts, C - total observed counts, B - observed

background counts, AS , AB are source and background regions respectively

and tS , tB are source and background exposure times.

In a low counts regime a treatment of the background could be tricky

and subtracting the background can lead to negative(!) counts. This is

where Poisson likelihood and therefore C-statistics should be used. However,

if one uses the Poisson likelihood based statistics (C-statistics/Cash) the

background cannot be subtracted, but source and background models have

to be fit simultaneously.

1.7.3 Rebinning

Rebinning or grouping of low counts data is sometimes used in the X-ray

analysis to increase number of counts in a new group. Rebinning is not the

best solution as it leads to the loss of information. For example an emission

line or absorption edge could disappear when the counts are grouped. How-

ever, if there is only a handful number of and as long as a simple continuum

model is being applied the grouping of data is the fastest and easiest way

to proceed with the analysis.
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1.7.4 Systematic Errors, Calibration and Model Uncertainties.

In addition to the statistical errors there are usually systematic errors that

are present in the observations. The most common way to include those

errors is to use the error propagation formulas and add the statistical and

systematic errors in quadrature. However, such approach does not account

for a non-linear errors such as the ones in the Chandra calibration files.

Drake et al (2006) shows how these errors affect the confidence of the best

fit parameters and that the calibration errors dominate in the error budget

in a very high signal to noise observations. Then the constrain on the best

fit parameters is limited by the size of these errors and as in Drake et al

approach the simulations should be used to estimate the uncertainties on

the parameters.

Another class of uncertainties is related to physical models. For example

in the plasma emission models the line transitions are defined with certain

uncertainties. Such uncertainties should be included in the analysis, however

the models typically do not state their uncertainties and the standard fitting

packages do not take into account such errors.

Avni, Y. 1976, Ap.J., 210, 642

Cash, W. 1979, Ap.J., 228, 939

Drake, J. J., Ratzlaff, P., Kashyap, V., Edgar, R., Izem, R., Jerius, D.,

Siemiginowska, A., & Vikhlinin, A. 2006, Proceedings of the SPIE, 6270,

Protassov, R., van Dyk, D. A., Connors, A., Kashyap, V. L., & Siemigi-

nowska, A. 2002, Ap.J., 571, 545

Wall, J. V., & Jenkins, C. R. 2003, Princeton Series in Astrophysics, van

Dyk et al 2001

van Dyk, D. A., Connors, A., Kashyap, V. L., & Siemiginowska, A. 2001,

Ap.J., 548, 224

Web pages:

http://hea-www.harvard.edu/AstroStat/ - it contains software link,

bibliography and “Statistics Jargon for Astronomers”

http://groundtruth.info/AstroStat/slog/ - Astrostatistics Blog


