MONITORING THE CHANDRA X-RAY OBSERVATORY VIA THE WIRELESS INTERNET

Bradley D. Spitzbart, Scott J. Wolk, and Robert A. Cameron
Chandra X-ray Center
Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA

The Chandra X-ray Observatory, launched in July 1999, continues to provide unprecedented high energy astrophysical discoveries with efficiency and reliability. From time to time, though, urgent operational decisions must be made by engineers, instrument teams, and scientists, often on short notice and at odd hours. There are several real-time, mostly Internet-based data resources available to aid in the decision-making discussions when a crisis arises. Chandra’s Science Operations Team (SOT) has been experimenting with emerging Wireless Application Protocol (WAP) technologies to create yet another pathway for data flow. Our WAP Internet pages provide anywhere, anywhere access to critical spacecraft information through cellular phones or other WAP-enabled devices. We currently offer several dynamic web pages including a live telemetry stream, information on the radiation environment, the real-time contact schedule, the week’s observing schedule, and contact information for key personnel. The protocol even allows CGI or other server-side executable code, which is implemented here to facilitate users’ queries for past data sets. There are, of course, many challenges in attempting to present useful, meaningful content on a 5 X 12 character screen over limited bandwidth in a way that is user-friendly and beneficial. This paper will discuss our experience with this developing and promising new medium, design strategies, and future enhancements.

OVERVIEW

The Chandra wireless web pages were conceived and evolved to provide ready access to the most relevant spacecraft information at the most critical, decision-making times. In its first incarnation, data was requested and passed through browser pages. Here we describe our next generation approach of using Wireless Application Protocol (WAP) enabled devices and Wireless Markup Language (WML) for a more comprehensive and accessible application. As presented, the pages are customized for viewing on cell phones. These same devices are also capable of showing pages through text messaging and in fact most of the team uses the phone to its full, versatile convenience for voice, text, and browsing. E-mails are sent directly to the devices by SOT monitoring software, alerting to high radiation conditions, and spacecraft or system anomalies. As with any emerging technology, the learning curve is quite steep, but we have solved several technical and design issues along the way. The URL for SOT Home is http://cxc.harvard.edu/mta/WL/sot.wml.

Key design drivers and principles:
- Mirror the most mission-critical of our myriad standard web pages (see http://cxc.harvard.edu/mta/sot.html).
- Use a simple, server-side approach for quick creation and maintenance.
- No need to recreate front-end, real-time telemetry decommutation scheme.
- Add a module to back-end of existing HTML-generating Perl code to output a plain text log of telemetry values.
- Run an underlying Perl (CGI) code to extract and format the user requested data.
- Implement a CGI interface to handle “browser” buttons which make data available from the past three days.
- Preserve the color coding of the original pages by displaying separate pages for each color. That is, the “RED Flags” link shows all values that are colored red indicating a limit violation or unexpected state.
- Expand the site to include WAP pages of real-time spacecraft ephem-eris, configuration, and radiation environment, real-time ACE data for additional radiation monitoring, DSN-support schedule and observing schedules derived from mission planning products, and contact information for key personnel.

Sample WML code of SOT wireless home page.

The weekly observing schedule is shown, with links for each day.

The DSN comm schedule is presented as a static page, updated every 10 minutes. * marks the current or next scheduled support for easy reference.

The Chandra Snapshot web page is mapped to transmit wireless pages for easier browsing and scrolling.

The CGI snapshot page serves the following functions:
- CGI interface calls up the requested data. Each subsystem has its own page.
- A cgi-based browser is built-in to access the past three days’ worth of data.
- "Color" indications are represented on separate pages.

FUTURE DEVELOPMENTS

Wireless Internet technology will continue to advance. More bandwidth, larger displays, and greater graphical capability will be made commercially available incrementally. This will allow us to offer more Chandra systems and scientific data quickly and conveniently via wireless access.

A few of our short and long term visions:
- Make more text-only pages accessible.
- Explore adding some simple graphical representations (ACE data, for instance) in the near future.
- Expanded graphical services as we convert our many monitoring and trending plots for wireless access.
- Enhanced user interactivity for searching and requesting specific data values and timeframes for trending and analysis.
- Supply products appropriate to a wide variety of devices. Compatibility and translation issues will be investigated to implement our wireless web on upgraded cell phones, PDAs and other devices.

The wireless web has proven to be a valuable resource for Chandra Operations and will continue to evolve and expand.

REFERENCES

Emulator courtesy of www.gelon.net
www.wap.com is currently being rebuilt, but was a useful site when the project was started.
We acknowledge valuable user feedback and bug reports.

This work is supported by the Chandra X-ray Center and NASA contract NAS5-39073.