The Impact of Magnetic Stresses and Inhomogeneities on Accretion Disk Spectra

Shane Davis

AS

Omer Blaes Ivan Hubeny Neal Turner Julian Krolik Jim Stone Shigenobu Hirose

Questions Addressed in This Talk

- How do magnetic fields and associated inhomogeneities affect disk spectra? (concentrate on local effects)
- What can we learn from (local) accretion disk simulations?
- What impact does this have on spin estimates?

The Multicolor Disk Model

• Assumes simple temperature distribution:

 $T_{\rm eff} \propto R^{-3/4}$

 Spectrum assumed to be color-corrected blackbody:

$$I_{\nu} = f_{\rm col}^{-4} B_{\nu} (f_{\rm col} T_{\rm eff})$$

Model Parameters

Spectral Formation

$$\lambda_{abs} = 1 / \kappa_{abs} \rho$$

 η_v : emissivity; λ_{abs} = mean free path to absorption

Spectral Formation

$$F_{\nu} = \eta_{\nu} \lambda_{eff} = \eta_{\nu} \lambda_{abs} (\lambda_{es} / \lambda_{abs})^{1/2} = B_{\nu} (T) (\kappa_{abs} / \kappa_{es})^{1/2}$$

 η_{v} : emissivity; λ_{abs} , λ_{es} = mean free path to absorption/scattering $\tau_{eff} = (\tau_{es} \tau_{abs})^{1/2}$; $\lambda_{eff} = (\lambda_{abs} \lambda_{es})^{1/2}$

Spectral Formation

• Depth of formation τ_* : optical depth where $(\tau_{es} \tau_{abs})^{1/2} \sim 1$

 $\tau > \tau_*$: absorbed

 $\tau < \tau_*$: escape

• Thomson scattering produces modified blackbody:

$$I_{\nu} \approx B_{\nu} \sqrt{\frac{\kappa_{\rm abs}}{\kappa_{es}}}$$

- Due to temperature gradients Compton scattering gives a softer Wien spectrum
- Very approximately: $f_{col} \sim T_{*}/T_{eff} \sim 1.5\text{-}1.8$

for BHBs

Nagnetic Pressure: Vertical Structure

- $P_{mag} = B^2/8\pi$ taken from simulations
- Extra magnetic pressure support increases scale height:

 $h_{mag} = P_{mag}/(d P_{mag}/dz) > h_{gas}$

• This leads to density reduction at τ_* :

 $\begin{aligned} \tau_* \sim \kappa_{es} \, \rho_* \, h \; \text{so} \\ \rho_* \sim \tau_* \, / \, (\kappa_{es} \, h) \end{aligned}$

- Lower ρ_* means lower ratio of absorption to scattering:

 $\kappa_{abs} / \kappa_{es} \alpha \rho_*$

which means larger T_{\ast}/T_{eff} and larger $f_{\rm col}$

Magnetic Pressure: Spectrum

- Lower ρ_{*} and higher T_{*}
 combine to give a harder
 spectrum
- In this case lower ρ_{*} alters statistical equilibrium – lower recombination rate relative to photoionization rate yield higher ionization and weaker edges
- Overall effect is an enhancement of $f_{\rm col}$ by ~10-15%

IsoitreV seitienegomodul erutourt2

 Compare 3D with 1D average: ρ dependence is important:

 $\begin{array}{l} \eta_{\nu} \, \alpha \, \rho^2; \ \lambda_{abs} \, \alpha \, \rho^{-2} \\ \lambda_{es} \, \alpha \, \rho^{-1} \end{array}$

- Non-linear dependence of $\eta_{\rm v}$ on ρ leads to enhanced emission
- Due to weaker dependence on ρ, photons escape predominantly through low ρ regions

olrsO etnoli seitienegomodul Spectra

- Spectral shape is approximately unchanged, but flux is enhanced by ~40%
- Increased efficiency allows lower T_{*} to produce equivalent flux
- Would lead to reduction of $f_{\rm col}$ by ${\sim}15\text{--}20\%$

- Magnetic pressure support acts to make disk spectra harder larger $f_{\rm col}$
- Density inhomogeneities will tend to make disk spectra softer smaller $f_{\rm col}$
- These uncertainties should be accounted for in black hole spin estimates approximately 20% uncertainty for a/M \sim 0.8 if $f_{\rm col}$ is off by ${\sim}15\%$