Optical studies of an ultraluminous X-ray source: NGC1313 X-2

Jifeng Liu Harvard-Smithsonian Center for Astrophysics

in collaboration with Joel Bregman, Jon Miller, Philip Kaaret

OUTLINE

- background: ultraluminous X-ray sources
- a case study: NGC1313 X2
 - X-ray observations
 - optical observations
 - astrometry
 - photometry
 - color-magnitude diagram
 - spectral energy distribution
 - discussion
 - IMBH formation
 - period?
 - radial velocity

ULXs are non-nuclear X-ray point sources with Lx > 2 X 10³⁹ erg/s, i.e., more luminous than the Eddington luminosity for stellar mass black holes, and could be intermediate mass black holes of 30 - 10⁵ Ms

- ULXs are non-nuclear X-ray point sources with Lx > 2 X 10³⁹ erg/s, i.e., more luminous than the Eddington luminosity for stellar mass black holes, and could be intermediate mass black holes of 30 10⁵ Ms
- key questions

- ULXs are non-nuclear X-ray point sources with Lx > 2 X 10³⁹ erg/s, i.e., more luminous than the Eddington luminosity for stellar mass black holes, and could be intermediate mass black holes of 30 10⁵ Ms
- key questions
 - are they stellar mass black holes or IMBHs

- ULXs are non-nuclear X-ray point sources with Lx > 2 X 10³⁹ erg/s, i.e., more luminous than the Eddington luminosity for stellar mass black holes, and could be intermediate mass black holes of 30 10⁵ Ms
- key questions
 - are they stellar mass black holes or IMBHs
 - how do they form if IMBH?

- ULXs are non-nuclear X-ray point sources with Lx > 2 X 10³⁹ erg/s, i.e., more luminous than the Eddington luminosity for stellar mass black holes, and could be intermediate mass black holes of 30 10⁵ Ms
- key questions
 - are they stellar mass black holes or IMBHs
 - how do they form if IMBH?
 - how do they radiate if stellar mass black holes?

ULXS IN NGC1313

- a barred SB(s)d galaxy at 3.7Mpc
- low metallicity of 0.1-0.2 Zs
- irregular SW satellite regions a tidally disrupted companion galaxy? a collision of huge HI clouds with the disk?
- ULXs: X1, X2, and SN1978K

ULXS IN NGC1313

- a barred SB(s)d galaxy at 3.7Mpc
- low metallicity of 0.1-0.2 Zs
- irregular SW satellite regions a tidally disrupted companion galaxy? a collision of huge HI clouds with the disk?
- ULXs: X1, X2, and SN1978K

X-RAY OBSERVATIONS: LIGHT CURVES

X-RAY OBSERVATIONS: SPECTROSCOPY

• light curves

- observed since EINSTEIN
- variability on time scales from days to months to years
- maximum Lx up to 3x10⁴⁰ erg/s

• X-ray spectra

- can be fitted with a power-law (Γ~2.3, 63%) plus a cool accretion disk (~160 eV, 37%) suggestive of a IMBH of ~10³ Ms (Miller et al. 2003)
- but the cool accretion disk component is dominated by the power-law component, and the fit is not unique
- it can also be fitted with a power-law (\[\Gamma 2.9,64\]%) plus a hot disk (~2.7 keV, 36\%). (Stobbart et al. 2006)

ESO 3.6m R Zampieri et al. 2004 counterpart: C (later resolved to C1 and C2)

ESO VLT true-color image

Pakull et al. 2006

Table 1. The HST ACS observations for NGC1313 X-2

ID	Filter	ExpT	DATE	ACor	\mathbf{Z}_{VEGA}	\mathbf{Z}_{ST}	VEGAmag
j8ola2010 j8ol02040 j8ol02030 j8ol02010	HRC/F330W WFC/F435W WFC/F555W WFC/F814W	2760 2520 1160 1160	2003-11-22 2003-11-22 2003-11-22 2003-11-22	0.420 0.277 0.249 0.292	22.904 25.779 25.724 25.501	23.026 25.157 25.672 26.776	22.037 ± 0.021 23.470 ± 0.017 23.625 ± 0.026 23.640 ± 0.043
j8ol06010	WFC/F555W	2240	2004-02-22	0.249	25.501	26.776	$23.472 {\pm} 0.021$

Note. — The columns are (1) exposure ID, (2) filter, (3) total exposure in seconds, (4) observation date, (5) aperture correction in magnitude, (6) zeropoint for VEGAmag, (7) zeropoint for STmag, and (8) VEGAmag for the counterpart.

Counterpart: C1

OPTICAL OBSERVATIONS: ENVIRONMENTS

IRAF/DAOPHOT was used

VEGAmag and STMAG were computed

ID	Filter	ExpT	DATE	ACor	\mathbf{Z}_{VEGA}	\mathbf{Z}_{ST}	VEGAmag
j8ola2010	HRC/F330W	2760	2003-11-22	$\begin{array}{c} 0.420 \\ 0.277 \\ 0.249 \\ 0.292 \\ 0.249 \end{array}$	22.904	23.026	22.037 ± 0.021
j8ol02040	WFC/F435W	2520	2003-11-22		25.779	25.157	23.470 ± 0.017
j8ol02030	WFC/F555W	1160	2003-11-22		25.724	25.672	23.625 ± 0.026
j8ol02010	WFC/F814W	1160	2003-11-22		25.501	26.776	23.640 ± 0.043
j8ol06010	WFC/F555W	2240	2004-02-22		25.501	26.776	23.472 ± 0.021

Table 1. The HST ACS observations for NGC1313 X-2

Note. — The columns are (1) exposure ID, (2) filter, (3) total exposure in seconds, (4) observation date, (5) aperture correction in magnitude, (6) zeropoint for VEGAmag, (7) zeropoint for STmag, and (8) VEGAmag for the counterpart.

OPTICAL OBSERVATIONS: VARIABILITY

OPTICAL OBSERVATIONS: VARIABILITY

- only 12 out of 400 stars are variable above 3 sigma
- counterpart: $\Delta F555W = 0.153 \pm 0.047$ mag

COLOR-MAGNITUDE DIAGRAMS

- use HST ACS/WFC VEGAmag photometric system for data and isochrones
- Z=0.2Zs isochrones (Leo Girardi), E(B-V)=0.11
- (a) t=1e7,5e7,2e8,5e8 years (b) t=1e7,5e7,3e8,1e9,3e9

COLOR-MAGNITUDE DIAGRAMS

- two populations
 - young: < a few 10⁷ years
 - old: 3-30x10⁸ years
- ULX age for E(B-V)=0.11 mag
 - 10⁷ years from F435W-F555W
 - 3x10⁷ years from F555W-F814W
- two ages converge at 5 X10⁶ years for E(B-V)= 0.33 mag [E(B-V)=0.44 mag from X-ray absorption]
 - initial/current mass of 52/8.5 Ms, radius of 7 Rs

SUMMARY

- counterpart identified with C1
- showed 15% variability
- SED consistent with O7V (Zs, 30Ms, 9Rs) for E(B-V) =0.33 mag
- E(B-V)=0.33 mag, Z=0.2Zs: an age of 5 million years, mass 8.5 Ms, and radius 7 Rs
- on the edge of a young open cluster, amid dominant old stars

• if an IMBH, cannot form from evolution of high metallicity stars ...

- if an IMBH, cannot form from evolution of high metallicity stars ...
- three merging scenarios

- if an IMBH, cannot form from evolution of high metallicity stars ...
- three merging scenarios

merging of	black holes	massive stars	proto stars
birthplace	globular cluster	super star cluster	proto cluster
timescale	>>10 ⁷ years	<3Myr	<0.5Myr
IMBH location	GC centers (1pc)	SSC centers (3pc)	around open clusters (100 pc)
note			low Z, external impact

- if an IMBH, cannot form from evolution of high metallicity stars ...
- three merging scenarios

merging of	black holes	massive stars	proto stars
birthplace	globular cluster	super star cluster	proto cluster
timescale	>>10 ⁷ years	<3Myr	<0.5Myr
IMBH location	GC centers (1pc)	SSC centers (3pc)	around open clusters (100 pc)
note			low Z, external impact

X2's location close to a young open cluster, the low Z, and possible collision/ disruption may point to the merging of proto stars in proto clusters

ORBITAL PERIOD?

- estimate the period assuming C1 overflows its Roche lobe
- Roche lobe size Rcr = a * f(q)
 - q = Msec/Mprimary
 - Kopal tabulation (1959)
 - Paczynski approximation (1971)
 - Eggleton approximation (1983)
- equating Rsec = Rcr ...
 - shorter P for larger q
 - $\rho = 110/P^2$ for q < 0.3
- constraints
 - P=56 hr?
 - P<56 hr => M<15 Ms
- propose observations to detect such a period

• if He II line from X-ray illuminated accretion disk, then a stellar mass black hole!

- if He II line from X-ray illuminated accretion disk, then a stellar mass black hole!
- however ...
 - emission lines from X-ray illuminated accretion disks are broad, >1200 km/s
 - radial velocity for a stellar mass black hole lower than 300 km/s
 - He II line from X-ray photoionized nebula/secondary
 - line shift severely affected by noise

- if He II line from X-ray illuminated accretion disk, then a stellar mass black hole!
- however ...
 - emission lines from X-ray illuminated accretion disks are broad, >1200 km/s
 - radial velocity for a stellar mass black hole lower than 300 km/s
 - He II line from X-ray photoionized nebula/secondary
 - line shift severely affected by noise
- need further observations
 - with higher signal-to-noise ratios and higher spectral resolution
 - to sample radial velocities at different phases

- if He II line from X-ray illuminated accretion disk, then a stellar mass black hole!
- however ...
 - emission lines from X-ray illuminated accretion disks are broad, >1200 km/s
 - radial velocity for a stellar mass black hole lower than 300 km/s
 - He II line from X-ray photoionized nebula/secondary
 - line shift severely affected by noise
- need further observations
 - with higher signal-to-noise ratios and higher spectral resolution
 - to sample radial velocities at different phases

