

AN UNSTABLE TRUTH: HOW MASSIVE STARS GET THEIR MASS

Anna Rosen Einstein and ITC Fellow Harvard-Smithsonian Center for Astrophysics In collaboration with: Mark Krumholz (ANU), Richard Klein (UCB/LBNL), Aaron Lee (UT Austin), Christopher McKee (UCB), Jeff Oishi (Bates College)

HARVARD-SMITHSONIAN CENTER FOR ASTROPHYSICS

How do massive stars get their mass?

Massive star formation is a competition between gravity and (direct+indirect) radiation pressure

Radiation halts isotropic accretion when $f_{\rm edd} \gtrsim 1$ for $M_{\bigstar} \gtrsim 20 \ {\rm M}_{\odot}$

Larson & Starrfield 1971, Kahn 1974, Yorke 1979, Yorke+1995, Wolfire & Cassinelli 1986, 1987; Yorke & Bodenheimer 1999, Krumholz+2009

Modeling massive star formation requires **multi**-dimensional **radiation**-hydrodynamic simulations

How do massive stars get their mass?

Krumholz+2009

- Star grows via disk accretion and radiative Rayleigh Taylor (RT) instabilities
- Only includes indirect
 P_{rad}

Kuiper+2011, 2012

- Star grows via disk accretion only.
- RT instabilities do not develop
- Includes both direct and indirect Prad

Klassen+2016

Questions:

 Is mass supplied to massive stars via radiative RT instabilities?
 How do massive stars *overcome* the radiation pressure barrier under more realistic conditions? (i.e., turbulence)

Hybrid Adaptive Ray-Moment Method (HARM²): New Hybrid Radiative Transfer Method for AMR RHD simulations

Abel & Wandelt 2002, Wise & Abel 2011

Adaptive ray-tracing for point sources

HARM² models radiative heating and pressure from the direct (stellar) and indirect (dust-reprocessed) radiation fields

Revisiting radiative RT instabilities

Top panel: (40,000 AU x 40,000 AU) Bottom panel: (8,000 AU x 8,000 AU)

(\star = stars with masses>0.1M_{\odot})

RT instability growth is sensitive to resolution

10⁻¹⁴

10⁻¹⁵

10⁻¹⁶

10-17

10-18

 cm^{-3}

Density [g

Rosen+2016

10⁻³

10-4

10⁻⁵

10⁻⁶ _____

10⁻⁷ ^{rad}

10-8

10⁻⁹

Direct

 $\Delta x_{sh} = 20-40 A$

Diffuse

Classical RT instabilities grow exponentially. $\eta(t) \propto \exp(\omega t)$ where $\omega \propto \sqrt{\lambda}$ Growth rate faster for smaller modes. $\tau_{\rm RT} \propto \sqrt{\lambda}$

P_{dir} may suppress initial non-linear growth of RT instabilities but... Asymmetry drives instability!

Testing our hypothesis: Low-Res Run

10⁷

10⁶

10⁵

10⁴

RT instabilities take longer to grow in lower-resolution shells.

RT instabilities still develop (later*) due to shielding/shadowing of direct radiation field.

*For comparison: Shells start to become unstable when $M_{\bigstar} \approx 25-30 M_{\odot}$ in higher resolution simulation.

(8,000 AU)²

Rosen+2016b

No refinement on $\nabla E_R!$

...but star forming cores are turbulent

Turbulence should be initial seeds for RT instabilities.

Collapse of turbulent core with HARM²

Initial Conditions: $M_{core} = 150 M_{\odot}$ $R_{core} = 0.1 pc$ $\rho(r) \propto r^{-3/2}$ $\sigma_{1D} = 0.4 \text{ km s}^{-1}$ $\Delta x_{min} = 20 AU$ $t_{ff} = 42,710 \text{ yrs}$

Top panel: (40,000 AU x 40,000 AU) Bottom panel: (8,000 AU x 8,000 AU)

Rosen+2016

Mass delivered to star via infalling dense filaments, RT instabilities, and disk accretion.

(20,000 AU)²

(3,000 AU)²

Rosen+2016

High accretion rates and infalling filaments provide sufficient ram pressure to overcome radiation pressure.

for massive star formation (McKee & Tan, 2003)

Rosen+2016

 $M_{\star} [M_{\odot}]$

Did I solve all of massive star formation?

Many important elements are missing

Outflows

Ginsburg+2017

Stellar Winds

NASA (Artist rendition)

Star	Code	$M_{ m init} \ M_{\odot}$	$v_{ m init} \ { m kms^{-1}}$	$M_{ m current} \ M_{\odot}$	auMyr
R136a1	Bonn	325_{-45}^{+55}	100^{+180}_{-60}	$315\substack{+60 \\ -50}$	$0.0\substack{+0.3\\-0.0}$
	Bonn	315^{+50}_{-20}	440^{+20}_{-85}	280^{+35}_{-30}	$0.8{\pm}0.2$
	Geneva	320^{+100}_{-40}	400	$265\substack{+80\\-35}$	$1.4^{+0.2}_{-0.1}$
R136a2	Bonn	195_{-30}^{+35}	100^{+325}_{-55}	190^{+35}_{-35}	$0.3\substack{+0.4\\-0.3}$
	Bonn	160^{+25}_{-20}	380^{+85}_{-20}	130^{+20}_{-20}	$1.6{\pm}0.2$
	Geneva	180^{+35}_{-30}	400	150^{+30}_{-25}	$1.7{\pm}0.1$
R136a3	Bonn	180 ± 30	100^{+330}_{-55}	175^{+35}_{-35}	$0.3\substack{+0.4\\-0.3}$
	Bonn	155^{+25}_{-20}	370^{+80}_{-30}	130^{+25}_{-15}	$1.5{\pm}0.2$
	Geneva	165 ± 30	400	135^{+25}_{-20}	$1.7{\pm}0.1$

Does feedback set the upper mass limit of the IMF?

Summary

New hybrid radiative transfer method, HARM², models direct and dust-reprocessed radiation pressure for AMR RHD simulations

Performed 3D RHD simulations of the formation of massive stellar systems from the collapse of (laminar and turbulent) massive pre-stellar cores.

The "Radiation Pressure Barrier" is no longer a barrier. RT instabilities, dense filaments, and gravitational instabilities deliver mass to massive stars' during their formation.

Simulation movies can be found at <u>www.anna-rosen.com/</u> movies