Morphological Drivers of Milky Way mass galaxies Insights from the FIRE Simulations

Shea Garrison-Kimmel, Phil Hopkins, Andrew Wetzel, Robyn Sanderson, Kareem El-Badry, Zach Hafen, and the FIRE Collaboration

FIRE-2 MW-mass sample

Fifteen galaxies simulated with the FIRE-2 models for star formation and feedback

Eight galaxies in LG-like pairs; seven isolated galaxies including three from the Latte suite (Wetzel+2016)

Baryonic particle masses $7-55 \times 10^3 M_{sun}$

stellar softening lengths ≲20 pc

 $0.86 \leq M_{halo} \leq 1.95 \times 10^{12} M_{sun}$

 $0.39 \leq M_{\text{star}} \leq 1.5 \times 10^{11} M_{\text{sun}}$ $2.5 \leq R_{\text{star}} \leq 17.5 \text{ kpc}$

Quantifying morphology: jz/jcirc

Sample includes $0.2 \leq f^*_{disk} \leq 0.8$

Quantifying morphology: R*

Define: $R^* = 2D$ radius that contains 90% of M_{star}

Comparing morphology measures

Kinematic (f_*^{disk}) and spatial (R_*) correlated, but lots of scatter

Disks form out of spinning gas

Morphology correlated with gas spin when the galaxy was forming stars

Growth of the galaxy and its halo

Evolutionary histories

Every galaxy has a story

Every galaxy has a story: Batman

The Dark Knight Rises

z=3.1 Batman = 0.2(Îst) 10 kp

Double merger funnels gas to center at $z\sim 2$ to form bulge; no late-time gas accretion

Every galaxy has a story: Romeo

No direct galaxy mergers after $z \sim 4$ Smooth accretion to z=0

Every galaxy has a story

Morphology scales with $M_{gas}(z)$

Gas accreted at late times typically has higher angular momentum and forms a disk

The evolution of stellar morphologies

Nearly all stars forming at late times in MW-mass galaxies **form in disks**

60-90% of stars are born in disks overall, even in bulge-dominated systems

Galaxies nearly always become **more disky** with time (*R** also increasing)

Mergers scramble/destroy disks at early times, but can help build disks if they occur at late times (when they tend to have more *J*)

Summary

- Fifteen MW-mass galaxies on FIRE vary from bulge-dominated to roughly pure disk (defined kinematically)
- Gas spin at high redshift is a good indicator of morphology
- Head-on mergers funnel gas to the center, where it forms massive bulges; galaxies with smoother accretion histories (no direct galaxy mergers; maximize their reservoir of star forming gas at late times) tend to be disk-dominated
- Average amount of cold gas in the halo (i.e., fuel for SF) after z=1 well-correlated with morphology
- ≥60% of MW stars (+nearly all born at z≤1) formed in disks (though not necessarily the disk that exists today), consistent with a picture where stars forming primarily from rotationsupported gas, as is the case at z=0 in all galaxies

Preview: ELVIS on FIRE

z ~ 0.2 (now at *z* < 0.1)

*m*_{gas} ~ 3500 M_{sun}

(will be) The highest resolution cosmological hydrodynamic simulation of a MW-mass galaxy ever completed

[this slide intentionally left blank] [the above statement is a lie]