The Role of GR and Tidal Effects in Dense Stellar Systems

Johan Samsing Princeton University

Morgan MacLeod, Enrico Ramirez-Ruiz

<u>Modeling</u>

Full N-body

very expensive (for example Nbody6)
 Impossible to resolve rare outcomes

Monte Carlo Technics

very fast currently used to calculate LIGO rates No tides - and maybe not even GR

Our approach:

- First to try understand the role of tides and GR for individual interaction channels.

- Later implement in full cluster codes

Interaction Channels:

Include: **GR** Include: **Tides**

Binary-Binary

Binary-Single

Single-Single

Interaction Channels:

Include: **GR** Include: **Tides**

Binary-Single

Motivations and Challenges

Motivation:

Globular Cluster Dynamics

- What is the proper size of a star when tides and GR are included?
- Exchanges or Tidally Induced Collisions?
- Reduced Energy Kicks?
- Hyper velocity stars through Hills Mechanism (GAIA)

Motivation: Formation of Compact Binaries

- Increased dynamical formation of compact object mergers?
- Hardening of binary BHs or disruptions?
- Formation of sGRB NS-NS binaries.

Full GR:

Pretorius/East

Dominates the high eccentric NS-NS GW inspirals

Challenges:

- Extremely difficult to simulate due to different timescales.
- What tidal model should be used? Dissipation, mode couplings?
- No analytical guidance related to tides in 3-body interactions.

Example:

Gaburov, E., Lombardi, Jr., J. C., & Portegies Zwart, S. 2010, MNRAS, 402, 105

- Carter, Luminet (1985)
- Lai, Rasio, Shapiro (1-4)
- Kochanek (91) •

ROUTINE

Single and statistical studies.

Can never be done with full hydro!!

Calc_binary_info(pos_1, vel_1,

4

2

0

-2

-4

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

Formation of GW inspirals and Tidal Captures - Analytical Scaling Solutions

How does the inspiral rate depends on the initial orbital parameters and the properties of the interacting objects (mass, radius, polytropic index etc.)?

Key ideas:

Find region where inspiral time is less than the isolation time.

Convert the size of this region to an inspiral probability.

Convert this to a cross section. $\sigma_{I_{ij}} \approx P(I_{ij}|CI) \times \sigma_{CI}$

$$\Delta E_p = \mathscr{E} \frac{M^2}{\mathscr{R}} \left(\frac{\mathscr{R}}{r_p}\right)^{\beta}$$

$$\Delta E_{tid} \approx \frac{Gm_j^2}{R_i} \left(\frac{R_i}{r_p}\right)^6 T_2(\eta)$$

$$\Delta E_{\rm GW} \approx \frac{85\pi}{12\sqrt{2}} \frac{G^{7/2}}{c^5} \frac{m_i^2 m_j^2 m_{ij}^{1/2}}{r_p^{7/2}}$$

$$T_2(\eta) \approx A \eta^{-\alpha}$$

$$\mathcal{E} = A, \ \mathcal{R} = R_i, \ M = m_j \left(\frac{m_j}{\mu_{ij}}\right)^{\alpha/4}, \ \beta = 6 + \frac{3\alpha}{2} \qquad \qquad \mathcal{E} = \frac{85\pi}{96}, \ M = \mu_{ij}, \ \mathcal{R} = \frac{2Gm_{ij}}{c^2}, \ \beta = \frac{7}{2}$$

Isolation time:

$$t_{iso} = 2\pi \sqrt{\frac{a_{bs}^3}{m_{bs}}}$$

$$\frac{m_1 m_2}{2a_0} = \frac{m_i m_j}{2a} + \frac{m_{ij} m_k}{2a_{bs}}$$

$$a'\equiv rac{a}{a_c},\ a_c\equiv a_0\left(rac{m_im_j}{m_1m_2}
ight)$$

$$t_{iso} = 2\pi \frac{a_0^{3/2}}{\sqrt{m_{bs}}} \left(\frac{m_{ij}m_k}{m_1m_2}\right)^{3/2} \left(\frac{a'}{a'-1}\right)^{3/2}$$

Inspiral boundary:

$$\epsilon_{insp} = \mathscr{E}^{1/\beta} \mathscr{M} \left(a_0 / \mathscr{R} \right)^{(1/\beta - 1)} \mathscr{G}(a', \beta)$$

$$\epsilon_{insp} \equiv (1 - e_{insp})$$

$$\mathscr{G}(a', \beta) = a'^{(1/\beta - 1)} \left(a' - 1 \right)^{-3/(2\beta)}$$

$$\mathscr{U} = \left(\frac{m_1 m_2}{m_i m_j} \right) \left[\left(\frac{M}{m_{bs}} \right)^2 \left(\frac{m_{bs}}{\mu_{ij}} \right)^{\frac{3}{2}} \left(\frac{m_k m_k}{m_1 m_2} \right) \left(\frac{m_{ij}}{m_k} \right)^{\frac{1}{2}} \right]^{1/\beta}$$

Lets consider an example

Inspiral boundary:

$$\epsilon_{insp} = \mathscr{E}^{1/\beta} \mathscr{M} \left(a_0 / \mathscr{R} \right)^{(1/\beta - 1)} \mathscr{G}(a', \beta)$$

$$\epsilon_{insp} \equiv (1 - e_{insp})$$

$$\mathscr{G}(a', \beta) = a'^{(1/\beta - 1)} \left(a' - 1 \right)^{-3/(2\beta)}$$

$$\mathscr{U} = \left(\frac{m_1 m_2}{m_i m_j} \right) \left[\left(\frac{M}{m_{bs}} \right)^2 \left(\frac{m_{bs}}{\mu_{ij}} \right)^{\frac{3}{2}} \left(\frac{m_k m_k}{m_1 m_2} \right) \left(\frac{m_{ij}}{m_k} \right)^{\frac{1}{2}} \right]^{1/\beta}$$

Convert to cross section

Cross sections:

Inspirals:

$$\sigma_{I_{ij}} \approx \mathscr{D} \left(\frac{a_0}{\mathscr{R}}\right)^{1/\beta} \left[\mathscr{N} \left(\frac{m_3}{\mu_{12}}\right)^{1/3} \left(\frac{2\pi G m_{bs} \mathscr{R}}{v_{\infty}^2}\right) \left(\frac{m_1 m_2}{m_i m_j}\right) \ln(a'_u) \right]$$

$$\mathscr{D} \equiv \mathscr{E}^{1/\beta} \mathscr{I}' \mathscr{M}'$$

Collisions:
$$\mathscr{U} \left(\frac{m_3}{\mu_{12}}\right)^{1/3} \left(2\pi G m_{bs} \mathscr{R}\right) \left(\frac{m_1 m_2}{\mu_{12}}\right) \ln(a'_u)$$

$$\sigma_{\mathcal{R}_{ij}} \approx \mathcal{N}\left(\frac{m_3}{\mu_{12}}\right)^{1/2} \left(\frac{2\pi G m_{bs} \mathcal{R}}{v_{\infty}^2}\right) \left(\frac{m_1 m_2}{m_i m_j}\right) \ln(a'_u)$$

Inspirals relative to collisions:

$$\frac{\Gamma_{\mathrm{I}_{\mathrm{ij}}}}{\Gamma_{\mathcal{R}_{\mathrm{ij}}}} \approx \frac{A_I - A_{\mathcal{R}}}{A_{\mathcal{R}}} \approx \mathscr{E}^{1/\beta} \mathscr{I}' \mathscr{M}' \mathcal{R}'_{ij} \left(\frac{a_0}{R_i}\right)^{1/\beta} - 1$$

Largest effect for wide binaries and when the objects are small! Inspirals can greatly dominate over collisions (sticky star approximation)

Simple Model

WD-NS tidal inspirals

Orbital phase-space

The inspiral region increases relative to collisions as the SMA increases.

Conclusions:

-The main effect from tides and GR is the formation of inspirals.

- Inspirals can dominate over collisions.

- The more compact an object is compared to the orbit, the more inspirals form relative to collisions.

High eccentric inspirals

Tides and GR are very important ingredients for the formation of high eccentric transients!