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1  Introduction

Here are simple aperture photometry formulae for computing photon flux and flux significance for a point 
source. For "flux significance" I will adopt the traditional "signal-to-noise ratio" definition, i.e., Flux /Flux , 
where Flux is the 1-sigma error in flux. Strictly speaking, it is only in the limit of Gaussian statistics that a 
single "1-sigma error" has meaning, but I'll defer discussion of this point to the end of the memo, and in what 
follows leave formulae for Flux in general terms. 

2   Definitions

x0,y0 Position of Source (centroid) 

S Source Flux (ph cm-2 s-1 ) 
n Counts in Source Aperture
AS Area in pixels of Source Aperture

ES Average Exposure (cm2s ) in Source Aperture
 Fraction of PSF enclosed in Source Aperture, i.e., 

= ∫
Source Aperture

psf x0 , y0 , x , y dxdy

B Background Density (counts pixel-1 )1

m Counts in Background Aperture
AB Area of Background Aperture

EB Average Exposure in Background Aperture

 Fraction of PSF enclosed in Background Aperture, i.e., 
= ∫

Background Aperture

psf x0 , y0 , x , ydxdy

3  Simple Case: Isolated Source, =0

The situation is shown in Figure 1. I have drawn a detached background aperture for clarity; in reality, it may 
be attached to the source aperture. The assumption  = 0 means that no source counts are scattered into the 
background aperture, and could be realized by setting the background aperture radius to a large value (e.g., > 
r99 ). Whether this would be practical or desirable is open to debate. 

By inspection, the flux for the source is then given by 

S= 1
ES

n−
AS

AB

m
and the error on the flux is given by 
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4   A More Complicated Case: Isolated Source, 0

In this case, the background aperture is sufficiently close to the source that some source counts are scattered 
into it. Now, S must be determined by solving two simultaneous linear equations: 

n= ES SAS B
m=E B SAB B

or 

S=
n−

AS

AB

m

 ES− EB

AS

AB

Note this reduces to the equation for S in the previous section on setting =0  . For simplicity, let 

a= 1

E S− E B

AS

AB

and 

b=

AS

AB

E S− EB

AS

AB

we can then write 

S=an−bm

and

 S
2=a2n

2b2m
2

5  General Case: Multiple, Overlapping Sources 

Consider the case indicated in Figure 2. Here, each source aperture includes contributions not only from the 
source it encloses and background, but also possibly from nearby sources. For laziness sake, I've drawn all 
regions as simple, independent circles and annuli; in real life they may overlap, and will have to be adjusted by 
excluding parts to ensure that the counts n1, n2, m1, and m2 are statistically independent. 



Generalizing the definitions for   and   in Section 2 to the case of multiple sources: 

ij Fraction of PSF for source i enclosed in source aperture for source j; 

ij Fraction of PSF for source i enclosed in background aperture for source j ; 

ES i Average Exposure (cm2s ) in Source Aperture i; 

ASi
Area in pixels of Source Aperture i ;

E B j Average Exposure (cm2s ) in Background Aperture j; 

AB j
Area in pixels of Background Aperture j ;

We can then write, for the case of two sources as in figure 2:

n1=11 ES 1
S121 ES 1

S 2AS 1
B

n2=12 ES 2
S 122 ES 2

S 2AS2
B

m1=11 EB1
S121 EB1

S 2AB1
B

m2=12 EB2
S122 EB2

S2AB2
B

But the last two equations can be summed into one, namely, 

∑
j

m j=∑
j

1j E B j
S12j EB j

S2∑
j

AB j
B

where the sums are over the number of background regions. We now have 3 simultaneous linear equations, 
which we can solve for S1, S2, and B. The solutions will again be of the form 

S i=ai n1bi n2c i m

 Si

2 =ai
2n1

2 bi
2n2

2 ci
2m

2

The expression of a, b, and c in terms of the various  ,  , etc. is left as an exercise for the reader. 
In general, for N sources, there will be N+1 simultaneous linear equations to solve, and Si and  Si

2  will be 

linear combinations of the counts ni and ni

2 , respectively. However, it probably doesn't pay to extend the 

analysis to N >  ~ 2-3 since the assumption that B is constant will probably be violated. 

6  Determining n
2

All that remains is to specify how to calculate quantities of the form n
2 , where n is small, so that Poisson 

statistics apply. As mentioned before, using a single number for "1   error" is only valid in the Gaussian 
limit, where  2  ~ n, but this is a poor approximation for small n. However, if we interpret s as the half-size 
of the two-sided 68.27% confidence limit about the true value, we can extend the concept more accurately for 
small n cases. The popular Gehrels approximation (Gehrels 1986, ApJ, 303, 336) 

n≈1n3/4

is a better approximation than n  (this is the approximation used in the Penn State Photometry code), but it 
overestimates the 68% confidence region. This is because the region is not symmetric about the true value. In 
fact, Gehrels provides two formulae, one for the lower bound, l , and one for the upper bound,  u (see 



equations 7 and 11 in his paper; S=1 for the 68% confidence region): 

u=n n3/ 41
 l=n− n−1/4

The following table illustrates the differences in the approximations for various values of n: 

n n=n n=1n3/4 n=
u−l

2
=n3/4n−1 /41

2

10 3.16 4.28 3.70

30 5.48 6.55 6.00

50 7.07 8.12 7.59

100 10.0 11.0 10.5

I suggest we use this last approximation for n . 

Figure 1.: A Single Isolated Point Source



Footnotes:

1Since the background contains both cosmic and instrumental components, it shouldn't be expressed in the 
same units as source flux. I'm assuming here that the background is essentially flat (at least over the scale of the 
region of interest) and dominated by the non-cosmic component. 

Figure 2.: Multiple Overlapping Sources 
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