Adding Dither Correctionsto L3 Lightcurves
Michael Nowak, MIT-CXC, October 5, 2007

Dither will introduce variability into lightcurves primgy in two manners. The first is via modulation
of the fraction of the area that is on a chip as a function o&tinthis fraction vs. time is caculated by
thedither _region tool. For a uniform response, the signal should be modulatéiect proportion to
the modulation of the fractional area. The second is duedcegtraction region moving among detector
areas with substantially different responses. An obvi@aseds moving between a backside and frontside
chip; however, moving across node boundaries might be miffito introduce a time-dependent signal. This
variation is not accounted for in tltither _region tool (although the tool does divide the fractional area
of the region into its component contribution from indivadwchips). Correcting for the latter effect would
require, at a minimum, an average response for each enengydoeeach chip as a function of time. For the
case of a near on-axis point source dithering between twiscthiis perhaps could be simply two responses
which are averaged in proportion to the fractional contrdsuto the extraction area from each chip (already
provided bydither _region). For extended sources, and sources far off axis, it becamssre difficult
problem (potentially requiring extraction and time-degemt weighting of many repsonses). For this reason,
| suggest that for the time being, we concentrate only on vémgalither variability introduced by extraction
area changes. This alone makes a substantial improvemieat ¢alculated variability properties of sources
(see my memo of Aug. 30, 2007).

The information provided by thdither _region tool is sufficient to provide the correction for the
Kolmogorov-Smirnov/Kuiper tests as well as for the Gregboyedo lightcurve. Thalither _region
tool needs to be run once for each source, and once for thees®associated background region. These
time vs. fractional area curves then need to be savved foinubese test. It would suffice to store these
data in an extension added to the source and backgroundumgbtfiles. Along with the fractional area
vs. time information, the files must also store the total gieaquare pixels) for the source region and the
background region at the value of fractional area = 1.

The procedure for correcting the variability tests is theroiows.

1. Runthadither _region tool on the source region, and then store the results.

e It would suffice to store this information as an extensiorh same file that stores the source
lightcurve.

e One could store thareafraction extension created by tlidther _region tool. How-
ever, the only necessary components ardthE andFRACAREAolumns. (Storing thAREACHIP_FRAC
column could be useful later on, should we wish to attempati@duce response variations as well.)

2. Store the value of the area of the extraction region (imsgpixels) foFRACAREAL.

e This value could be stored in the header of the extensiorsthats thelIME andFRACAREA
columns.

3. Run thedither _region tool on the background region, and likewise storeThdE, FRACREA
and region size (in square pixels) results.

4. The background region information will not be directlyedsn the variability tests. It will be used
in creating the Gregory-Loredo lightcurve for the backgmbu The background region area will be
employed by the user to scale the background lightcurveyldhthey wish to subtract it from the
source lightcurve.

¢ | suggest background subtraction of the lightcurve be aclsgice, and not done automatically
for the catalog.

5. For the Kolmogorov-Smirnov/Kuiper tests, source esiogscregion variability is accounted for in the
initial set-up of the model (done via thleake_model function in theS-lang code). Essentially,
one is integrating the product of the good time intervalwiie FRACAREAss. TIME curve. The
cumulative integral of this product is the cumulative dizition function against which we compare
the data. The K-S/Kuiper test with these model changes &wike then run as normal.

¢ | have attache®-lang code at the end of this document implementing this procydesiag
interpolation and integration schemes from 8#ang GSL-module. Using the GSL-module is not
a strict requirement. Any comparable interpolation/inigign scheme would suffice.

e The attacheds-lang code also contains a rewrite of the “GTI correction” only tpafr the
currentmake_model code. Mine is somewhat faster 2x), and less prone to error.

6. As the Kolmolgorov-Smirnov/Kuiper tests are only usecssess variability, and not being used to
create a lightcurve, there is no procedure here to be apjliget background lightcuve or regions.

7. As coded, theglvary tool already is applying GTI information, and is set-up todrporate the
FRACAREAnformation via theeff file input. This should suffice; however, one will need to uee t
times from the output lightcurve when generating the assedibackground lightcurve.

¢ | believe the only major difference from my code and Beode is in the definition of the
lightcurve. | add a term for the no-subdivisions portiontad probability. This will only be relevant
for low-probability values; however, as we are going dowrDi6 probabilities in the catalog, it's
probably worth making this adjustment gdvary . That would be something for Arnold Rots to
implement.

o A stylistic difference is that for my final output lightcurvechoose times at the beginnings of
bin edges, whereagvary seems to be choosing the middles of bins. As long as the ailou are
done properly, this doesn’t make any difference. HoweVes, does make me realize that using the
glvary output straight in a cross-correlation idad idea, since the time bins are not statistically
independent. I'll discuss this more in a later memo on bamkgd flares.

e The lightcurve output of the routine needs to be (and | belisy counts/sec/fracarea, i.e.,
normalized toFRACAREAL.

¢ | have attached a revised version of i8ang code for reference. It doesn’t have the in-
put/output features dajlvary , nor all of the same toggles; however, it does give the propgput
lightcurve (for a given set of times), and runs comparabsy & theC-code. It should be useful as a
reference for any questions.

8. Theglvary code should be applied to the background region, with its dWE vs. FRACAREA
information applied. However, in contrast to the sourcétbgrve, where the code determines the
output times for the lightcurve, here one should force thekgeound lightcurve to be evaluated on
the source lightcurve times. This product is what should bigem as the background lightcurve.

o Note that only the times of the background lightcurve shiwagldpecified by the source lightcurve.
mmax the maximum number of partitions to use in creating thettigtve, should not be (beyond the
normal starting value). l.e., don't force the backgroumggthticurve to be the sanmemaxas the source.

¢ Again, this lightcurve is to be counts/sec/fracarea (hermalized tcFRACAREA: 1.

e The background lightcurve is not to be subtracted from th&c® lightcurve. That is a
job for the user. Specifically, the user should calculatesit source lightcurve - (source region
area/background region aredjackground lightcurve. This is the reason why we need te stoz
region areas.

%
%
%
%
%
%
%

e For sources and backgrounds that cover multiple chipse timery be some issues with consis-
tency of the GTls between the source and background. | waudest that source and background
share the same GTI, and that GTI be the intersection of the @&Tkeach.

. For the K-S/Kuiper tests and the Gregory-Loredo varitgtgst, theTIME vs. FRACAREAurve only

needs to be generated once for the source and once for thgrbackl. The same information is used
for the four science bands and the integrated band. Howeseh science band and the integrated
band will have the maximum partitionsymax and the times over which the lightcurve is evaluated,
be individually determined for that band. The correspogdiackground lightcurve file then follows

the specific results for the source lightcurve in that band.

¢ Since all energy bands will share the sam®E vs. FRACAREAurve, and histogramming
this is one of the more computationally expensive parts effftocess, one can consider calculating
it once, and then using it as a passed value for the subsequentin myS-lang code, this is the
gl _struct.gj piece. However, running that piece of code five times instdazhce is probably
not as much computation time as runnisigher _region once. Getting close, but probably still
less. But if one were looking for an area to shave off more titm&t would be it.

Here is myS-lang code for correctingnake_model for the K-S/Kuiper test.

To incorporate GTI and region area changes due to dither,
all one really needs to do is add it to the definition of
the model. GTI are already incorporated into the model.
Below we implement a slightly improved version of adding
GTI only (exact same interface as the old make_model),
and a newer version that also takes the output of

the dither_region tool.

define make_model()

{

%
%
%

variable t_event, time_lo, time_hi;
(t_event,time_lo,time_hi) = ();

variable mm = length(t_event);
variable modl = Double_Type[mm];
variable ii,jj;
variable nn;

nn = length(time_lo);

variable tot_gti = sum(time_hi - time_lo);
variable frac = (time_hi - time_lo) / tot_gti;

The following should replace the lines in the current code.
It is more than 2X faster, and won't break if there happens
to be an event time that falls between GTI boundaries

%%%
variable cfrac = [0.,cumsum(frac)];

_for jj (O,mm-1,1)

{
variable ifrac = max(where(time_lo <= t_event[jj]));
if(time_hi[ifrac] < t_event][jj])

{ modl[jj]=cfrac]ifrac+1];
}
else
{
modl[jj]=cfrac]ifrac] +
(t_event][jj]-time_loJifrac])/tot_gti;
}
}
%%%
return modl;
}
%%% %% % %% % %% %% % %% %% %% %% % %% % % %% %% % %% %% %% %% %% %%
% %
% Now to incoporate dither_region results: %
% %

%%%%%%% %% %%%% % %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%

% We're going to use the GSL interpolation routines,

% as for my take on the GLVary tool. One could probably
% do this in a lot of ways - but the basic point is that

% the model is the integrated (region X gti) curve up to

% the event time, divided by the integral over the whole

% interval. l.e., it goes from 0 to 1, and in exactly

% the same fashion as above if region = constant.

require("gsl™);

define make_model_lI()

{

% ta,adt hold fractional area/deadtime corrections vs. tim e
variable t_event, time_lo, time_hi, ta, adt;

(t_event,time_lo,time_hi,ta, adt) = ();

variable Igti, icheck, ibad = Integer_Type[O];
Igti = length(time_lo);

% Merge fractional area vs. time with GTI information

icheck = where(ta < time_lo[0] or ta > time_hi[lgti-1]);
if(length(icheck)>0){ ibad = [ibad,icheck]; }

if(Igti>1)

{
variable j;
_for j (0,Igti-2,1)
{

icheck = where(ta>= time_hi[j] and ta<=time_lo[j+1]);
if(length(icheck)>0){ ibad = [ibad,icheck]; }
Igti = length(time_lo);

% Merge fractional area vs. time with GTI information

icheck = where(ta < time_lo[0] or ta > time_hi[lgti-1]);
if(length(icheck)>0){ ibad = [ibad,icheck]; }

if(Igti>1)

{
variable j;
_for j (0,lgti-2,1)
{

icheck = where(ta>= time_hi[j] and ta<=time_lo[j+1]);
if(length(icheck)>0){ ibad = [ibad,icheck]; }

}
if(length(ibad) > 0) { adt[ibad]=0.; }

% Define the spline of the effective area curve, and get
% the integral over the whole GTI range.

variable spline_adt = interp_akima_init(ta,adt);
variable a_avg =
interp_eval_integ(spline_adt,time_lo[0],time_hi[lgt

% Start setting up the model

variable mm = length(t_event);
variable modl = Double_Type[mm];

% Do integration of spline in neighboring points, then sum

5

I-1]);

modI[0] = interp_eval_integ(spline_adt,time_Ilo[0],t_e vent[0]);

_for j (1,mm-1,1)
{

}

modl=cumsum(modl)/a_avg;

modl[j] = interp_eval_integ(spline_adt,t_event[j-1],t _eventl[j]);

return modl;

Attached below is mys-lang code for performing the Gregory-Loredo test and creatiegsociated
lightcurve. It doesn’t perform tha — o deviation test likgglvary does, and it chooses a different binning
for the output lightcurve, but otherwise it works more orsléise same. This almost as fast as @heode,
and is probably about as fast as | can make it. It is designedrtaon ISIS , and use the GSL-module,
but there aren't that many external dependencies in italt®od reference to compare thlwary code
against.

% GSL is for interpolating/integrating the effective area/ deadtime

require("gsl™);

% The GSL Ingamma function is pretty fast, but tabulating Ing amma
% is slightly faster, especially for multiple runs

#ifnexists fst_Ingamma
private variable log_sum = Double_Type[320001];
log_sum[[0,1]] = [0.,0.];

variable i;
for(i=2; i<=320000; i++)
{
log_sum[i] = log_sumli-1] + log(i);
}
public define fst_Ingammalf(i)
{
return log_sumlint(i-1)];
}
#endif
% t = event times; tmin & tmax = max & min time of lightcurve,

% mmax = maximum partition number in trial lightcurves

% ta, adt = effective area/deadtime times and values

% dodither = Toggle for applying dither correction to lightc urve
% thresh = helps determine truncation of partitioned lightc urve

define log_odds(t,tmin,tmax,mmax,thresh,dodither,ta, adt,nmult)
{
if(dodither !=0)
{
variable inz = where(adt>0);
variable adt_use = [inz[0]:inz[length(inz)-1]];
ta = taJadt_use];
adt = adt[adt_use];
variable na = length(adt);
if(tmin < ta]0]){ tmin = ta[0]; }
if(tmax > ta[na-1])}{ tmax = ta[na-1]; }
}
% Only look at times within tmin & tmax
t = tlwhere(t>=tmin and t<tmax)];
variable j;
variable n=length(t);
variable dt_int = tmax - tmin;
variable a_avg=1.;
if(dodither !=0)
{
% Define the spline of the effective area curve
variable spline_adt = interp_akima_init(ta,adt);
a_avg = log(interp_eval_integ(spline_adt,tmin,tmax)/d t_int);
% Do integration of spline in neighboring points, then sum
variable iadt = Double_Type[na];
_for j (1,na-1,1)
{
iadt[j] = interp_eval_integ(spline_adt,tafj-1],talj]) ;
}
iadt=cumsum(iadt);
% Define the spline of the integrated effective area curve
variable spline_iadt = interp_akima_init(ta,iadt);
}
variable nj = Array_Type[int(mmax)-1];
variable aj = @nj;

variable m=[2:int(mmax):1];
variable lods=Double_Type[int(mmax)-1];

variable lo,hi,im;

_for im (2,int(mmax),1)

{

% Create grid for partitioning lightcurve into im bins

lo
hi
lo
hi

[0:im-1];

[1:im];
__tmp(lo)*(dt_int/im);
___tmp(hi)*(dt_int/im);

if(dodither '= 0)
{

% For each partitioning, create average deadtime/effectiv
% area per bin. Dead bins are set equal to the average
% effective area, so as not to contribute to the sum

ajlim-2] = (interp_eval(spline_iadt,hi)
-interp_eval(spline_iadt,lo))*(im/dt_int);

aj[im-2][where(aj[im-2]==0.)] = a_avg;

}

else

{
}

aj[im-2] = Double_Type[im]+1;

% For each lightcurve partition, the arrays of counts per bin
nj[im-2] = histogram(t,lo,hi);

% The odds ratio for each partitioning. The nj[im-2]*()
% term is removed if effective area variation is unimportant

if(dodither != 0)

{
lods[im-2] = sum(nj[im-2]*(a_avg-log(aj[im-2])) +
fst_Ingamma(nj[im-2]+1)) +
n*log(im) + fst_Ingamma(im) - fst _Ingamma(n+im);
}
else
{
lods[im-2] = sum(fst_Ingamma(njlim-2]+1)) +
n*log(im) + fst_Ingamma(im) - fst_Ingamma(n+im);
}

}

% This bit uses the return pieces from above to find what the
% maximum odds ratio is, and temporarily takes that out (loma
% a replacement for Arnold’s bias parameter), and then like
% Arnold’s code, truncates the number of lightcurve binning

variable iw = where(lods==max(lods));
variable lomax = lods[min(iw)];

lods = exp(lods-lomax);
variable csum = cumsum(lods)/(m-1);

% Truncate the number of partitionings of the lightcurve

if(thresh < 0) thresh==0.;
variable imax = max(where(csum >= max(csum)/exp(thresh))
iw = where(lods[[0:imax]]==max(lods[[0:imax]]));

% Return the probability (p), the odds ratio for each partion
% (oratio), the log of the summed odds (lodds_sum), the # of
% partitions for the peak odds ratio (mpeak), the # of partiti
% for each (m), the histogrammed counts for each partitionin
% the integrated and averaged effective area for each partio
%(aj, a_avg), and the used min/max times (tmin/tmax)

variable gl_struct=
struct{p, oratio, lodds_sum, mpeak, mmax, m, nj,
aj, a_avg, tmin, tmax, tlc, rate, erate};

% The # of partitions of the lightcurve with the highest odds r
gl_struct.mpeak = min(iw)+2;

% Calculate the total probability of variability (p) and the
% ratio for each partitioning of the lightcurve (oratio).

variable msum = csum[imax];

variable Isum = log(msum) + lomax;

gl_struct.p = 1/(exp(-lsum)+1);

gl_struct.oratio = __tmp(lods)[[0:imax]]/
((imax+1)*(msum+exp(-lomax)));

% The rest of the return values
gl_struct.lodds_sum = Isum;

gl_struct.mmax = imax+2;
gl_structm = __ tmp(m);

s kept

ing

ons

g (),
ning

atio.

odds

gl_struct.nj = __tmp(nj);

gl_struct.aj

__tmp(aj);

gl_struct.a_avg = exp(a_avg);
gl_struct.tmin = tmin;
gl_struct.tmax = tmax;

% If nmult =0, return a lightcurve with nmult*mmax bins

if(nmult '=0)

{

variable tfrac = [0:nmult*(imax+2)-1]/(nmult*(imax+2)*
variable rate = Double_Type[nmult*(imax+2)];
variable erate=@rate;

% We might not have used all the data ...
variable ntot=sum(gl_struct.nj[0]);
variable nj_ii_k, oratio_ii, aj_ii_k, drate;

% Best estimate of the lightcurve is calculated here.
% Fractional area/deadtime correction is included.

variable ii;
_for ii (0,imax,1)
{
variable mloop=ii+2;
variable k = int(tfrac*mloop);

nj_ii_k=gl_struct.nj[ii][K];

oratio_ii=gl_struct.oratiol[ii];

aj_ii_k = gl_struct.aj[ii][K];

drate = (mloop/(ntot+mloop))*
(__tmp(oratio_ii)*(nj_ii_k+1)/aj_ii_k);

rate = _ tmp(rate) + drate;

erate = _ tmp(erate) + (mloop/(ntot+mloop+1))*
(__tmp(drate)*(__tmp(nj_ii_k)+2)/__tmp(aj_ii_k));

}

% Here | differ from Gregory&Loredo and Arnold. G-L only incl
% the variable part of the lightcurve (i.e., partitionings w

% >=2 bins), reasonable for p”1l. L3 goes down to p70.6, theref
% the estimated constant lightcurve part should be included

rate = _ tmp(rate) + (1.-gl_struct.p)/gl_struct.a_avg;

erate = _ tmp(erate) + (1.-gl_struct.p)/gl_struct.a_avg
erate = sqrt(__tmp(erate)-rate”2);

10

1);

ude

ith

ore

gl_struct.tic = __tmp(tfrac)*(tmax-tmin)+tmin;

gl_struct.rate =
__tmp(rate)*(ntot/(tmax-tmin));

gl_struct.erate =
__tmp(erate)*(ntot/(tmax-tmin));

}
return gl_struct;
}
%0%0%%%% %% %% % %% %0%0% %% %% %% % %% %% %%
% %
% Apply above to test file %
% %

%%%%% %% %% % %% %% %% %% %% %% % %% %% %%
variable file,fp,t_event,mmax;
variable res;

variable tfrac,iw,k;

variable tmin = 7.2039524e7, tmax = 7.2141507e7;
mmax = int(min([(tmax-tmin)/50,3000]));

variable i=1,;
file = sprintf("%04d",i);

% Read data file

t event = fits_read_col("dither_sourcelll.fits","time

% Read good time intervals

variable start_gti,stop_gti,Igti,icheck,ibad=Integer

(start_gti,stop_gti) =
fits_read_col("dither_sourcelll.fits[GTI]","start",

Igti = length(start_gti);

% Read deadtime/fractional area vs. time

variable ta, adt;
(ta,adt) = fits_read_col("dither_sourcelll.frac”,"tim

% Merge fractional area vs. time with GTI information
icheck = where(ta < start_gti[0] or ta > stop_gti[lgti-1]);

if(length(icheck)>0){ ibad = [ibad,icheck]; }

11

_Typel[0];

"stop");

e","fracarea");

if(Igti>1)

{
variable j;
_for j (0,Igti-2,1)
{
icheck = where(ta>= stop_gti[j] and ta<=start_gti[j+1]);
if(length(icheck)>0){ ibad = [ibad,icheck]; }
}
}

if(length(ibad) > 0) { adt[ibad]=0.; }
tmin = min(ta);

tmax = max(ta)-tmin;

ta = ta-tmin;

t_event = t_event-tmin;

% Run the G-L test

variable res = log_odds(t_event,0,tmax,mmax,0.5,1,ta,a

% For p>0.9, plot and save the info. (Note - | haven't added
% the additional logic by Arnold to calculate 3 sigma deviati
% of the lightcurve, as an additional variability check.)

%%%%%%% %% %% %% % %% %% %% %% %% %%

% %
% Print and Plot Stuff %
% %

%%%%% %% %% % %% %% %% %% %% %% %% %%

if(res.lodds_sum > log(9))

{
variable ntot=sum(res.n;j[0]);
print("\nFile Peak m m_max Total Counts Log Odds");
(O)=printf("%4i %A4i %A4i %7i %9.2f\n\n",

i,res.mpeak,res.mmax,int(ntot),res.lodds_sum);
xrange;
yrange(min([res.rate-2*res.erate,0.8*res.rate]),
max([res.rate+2*res.erate,l1.2*res.rate)));

charsize(1.12);
xlabel("WfrTime (sec)");
ylabel("\frCorrected Rate (cts/sec/area)");
set_frame_line_width(3);
set_line_width(2);
linestyle(2);

plot(res.tic,res.rate+res.erate,2);

12

dt,300);

ons

oplot(res.tlc,res.rate-res.erate,2);
linestyle(1);

oplot(res.tic,res.rate,1);

}

%%%%% %% %% % %% %% %% %% %% %% %% %% %%
% %

% Compare to GLVARY tool %

% %

%%%%% %% %% %% %% % %% %% %% %% %% %% %%

#iffalse
variable t _glv, r_glv, e _glv;

(t_glv, r_glv, e_glv) = fits_read_col("gl_sourcelll_Ic. fits",
"time","count_rate","count_rate_err");
t glv =t _glv - tmin;
linestyle(2);
oplot(t_glv, r_glv-e_glv, 5);
oplot(t_glv, r_glv+e_glv, 5);
linestyle(1);
oplot(t_glv, r_glv, 4);
#endif

xrange(); yrange();

13

