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1 Introduction

The purpose of this document is to present a formalism for statistically averag-
ing source positions and their uncertainties for use in the level-3 pipeline. More
specifically, the problem addressed here is to find an improved estimate for the
position of a source from previous independent estimates ofits position. The un-
certainties of the estimates are expressed in the form of error ellipses centered
upon the estimated positions.

This document is organized as follows: In section§2, the much simpler one-
dimensional problem of optimal weighting is addressed. Section §3 extends the
approach of§2 to the multivariate case section. Then in section§4 the results of
section§3 are applied to the two-dimensional case involving the geometric param-
eters of the error ellipses after projection to a common tangent plane. The tangent
plane projections themselves are discussed in section§5. A brief summary that
provides a sort of road map to the key equations necessary forthe implementation
of the methodology follows in§6. Finally there is an appendix that contains the
code-listing for aS-Lang implementation as well as an example of its use.

1



2 Optimal Weighting

Before tackling the more generaln-dimensional case, it is useful to consider the
simpler 1-d case. Suppose thatx̄a represents theath estimate of the meanµ of
some quantity, e.g., a temperature, and letσ2

a be the variance of theath mean.
Given a set of such estimatesx̄a of the mean, and the corresponding set of vari-
ancesσ2

a, what is the best way to combine these to obtain an improved estimate of
the mean and the variance of that estimate? The approach taken here is to use an
optimal weighting scheme that minimizes the resulting variance. Let̄x denote the
improved estimate and letwa be the set of weights. Then an unbiased estimate of
µ is

x̄ =
1

w

∑

a

wax̄a, (1)

where
w =

∑

a

wa (2)

That is,
µ = 〈x̄〉, (3)

where〈·〉 denotes the expectation value, and the individual estimates x̄a are as-
sumed to be unbiased.

From equation (1) it is easy to show that

Var[x̄] =
∑

a

(wa

w

)

2

Var[x̄a]. (4)

The conditions forσ2 to be a minimum may be obtained by differentiating the
above equation with respect towb. This procedure yields

wbVar[x̄b] =
1

w

∑

a

w2

aVar[x̄a]. (5)

Since the right-hand-side of the above equation is independent of b, it follows
thatwb is proportional to1/Var[x̄b]. Substituting these weights into equation (1)
produces

x̄ =

[

∑

a

Var[x̄a]
−1

]−1
∑

a

Var[x̄a]
−1x̄a, (6)
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which, by construction, is the linear combination ofx̄a with the smallest variance.
Substituting the weights into equation (4) yields the variance inx̄:

Var[x̄] =

[

∑

a

Var[x̄a]
−1

]−1

, (7)

allowing equation (6) to be written as

x̄ = Var[x̄]
∑

a

Var[x̄a]
−1x̄a. (8)

3 The Multivariate Case

In this section, the previous technique is extended to the multivariate case. LetXa

represent theath estimate of the mean of some N-dimensional quantityµ, and let
σa denote theN by N covariance matrix associated with this estimate. That is,

σa,ij = 〈(Xa,i − µi)(Xa,j − µj)〉, (9)

whereµi = 〈Xa,i〉. From the above equation it is straight-forward to show that

〈Xa,iXa,j〉 = σa,ij + µiµj . (10)

An improved estimateX for µ may be obtained by a weighted sum of the individ-
ual estimatesXa, i.e.,

X =
∑

a

WaXa. (11)

Here,Wa are a set ofN by N matrices whose matrix elements are to be obtained.
In order thatµ = 〈X〉, it is necessary for the matrix elements to satisfy the con-
straint

δij =
∑

a

Wa,ij . (12)

It is easy to show that the covariance matrixσ is given by

σij = 〈(Xi − µi)(Xj − µj)〉,

=
∑

a

(

WaσaW
⊤

a

)

ij
. (13)
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Now letR be a rotation matrix that transforms the vectorX to X ′ = RX. Then
it is easy to show thatσ transforms as

σ′ = RσR−1. (14)

It is well known that the above (similarity) transformationmay be used to diago-
nalizeσ by choosingR appropriately. In the basis whereσ′ is diagonal the product
of the diagonal elementsσ′

ii may be used as a measure total variance as this prod-
uct is related to the volume of the ellipsoid associated withthe covariance matrix.
In the diagonal basis, the product

∏

i σ
′

ii also corresponds to the determinant of
σ′, denoted here asdet(σ′). Since the determinant is invariant under similarity
transformations, it follows thatdet(σ′) = det(σ).

In other words,det(σ) corresponds to the volume of the covariance ellipsoid and
is taken as a scalar measure of the “total error”. Hence, the weightsWa,ij will
be chosen to minimize the determinant of the covariance matrix σ subject to the
normalization conditions of equation (12). The constraints are most easily handled
through the use of Lagrange multipliersλij , where the function to be minimized
may be written as

det(σ) + λij(δij −
∑

a

Wa,ij). (15)

Here and in the the following, the Einstein summation convention is used where
unless otherwise specified, repeated indicesi, j, . . . are to be summed over.

The minimization conditions follows in the usual way and maybe written as

0 =
∂ det(σ)

∂Wa,ij

− λij (16)

and
0 = δij −

∑

a

Wa,ij . (17)

The derivatives involvingWa,ij may be carried out using the chain rule

∂ det(σ)

∂Wa,ij

=
∂ det(σ)

∂σlm

∂σlm

∂Wa,ij

. (18)

It is left as an exercise for the reader to show that

∂σlm

∂Wa,ij

= δilσa,jkWa,mk + Wa,lkσa,kjδmi. (19)
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By expandingdet(σ) in terms of its cofactors, one can show (see any advanced
linear algebra text) that

∂ det(σ)

∂σlm

= det(σ)σ−1

lm . (20)

Together with the last two results and equation (18), the minimization condition
given by equation (16) may be written in the form

λij = 2 det(σ)
(

σ−1Waσa

)

ij
. (21)

Since the left-hand-side of this equation is independent ofa, it follows thatWa

must be of the formAσ−1

a , whereA is some matrix that is independent ofa. The
normalization condition of equation (12) may be used to determineA yielding

Wa =
[

∑

b

σ−1

b

]−1

σ−1

a . (22)

Substituting this result into equation (13) and exploitingthe symmetry ofσ pro-
duces

σ =
[

∑

a

σ−1

a

]−1

. (23)

Finally equation (11) may be written

X = σ
∑

a

σ−1

a Xa, (24)

which is the main result of this section. Note the formal resemblance of this
equation to the univariate case in equation (8).

4 Computing Covariance Matrices

As seen in section§3, covariance matrices play a fundamental role in combining
error ellipses. This section deals with the computation of the covariance matrices
from the parameters that characterize the elliptical geometry. It is assumed that the
ellipses have been projected to a common tangent plane, as described in section
§5.

The geometry of each error ellipse is specified by five parameters, of which three
are directly related to the covariance matrix. These are theangleθ that that major
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axis of the ellipse makes with respect to the tangent planey axis, and the the
semi-major and semi-minor axis lengths. The lengths of the semi-major and semi-
minor axes correspond to the 1-sigma confidence intervals along these axes. More
specifically, in a basis whose origin is at the center of the ellipse, and whosey axis
is along the ellipse’s major axis, the correlation matrix is

σ′ =

(

σ′2

1
0

0 σ′2

2

)

. (25)

Here,σ′

1
is the 1-sigma confidence value along the minor axis of the ellipse, and

σ′

2
is that along the major axis (σ′

2
≥ σ′

1
). The form of the covariance matrixσ in

the unrotated system follows from equation (14) using

R =

(

cos θ − sin θ
sin θ cos θ

)

(26)

to yield

σ =

(

σ′2

1
cos2 θ + σ′2

2
sin2 θ (σ′2

2
− σ′2

1
) cos θ sin θ

(σ′2

2
− σ′2

1
) cos θ sin θ σ′2

1
sin2 θ + σ′2

2
cos2 θ

)

. (27)

It is left as an exercise for the reader to show that the inverse relations are

θ =
1

2
tan−1

( 2σ12

σ22 − σ11

)

, (28)

σ′2

1
=

1

2

[

σ11 + σ22 −
√

(σ22 − σ11)2 + 4σ2

12

]

, (29)

and

σ′2

2
=

1

2

[

σ11 + σ22 +
√

(σ22 − σ11)2 + 4σ2

12

]

. (30)

5 Tangent Plane Projections

In order to combine the confidence ellipses via equation (24), it is first necessary
to project them to a common tangent plane. This procedure is described in this
section.
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Theath estimate of the source position is specified as a confidence-ellipse cen-
tered upon the celestial coordinate(αa, δa), with the major-axis making and angle
θa (−π ≤ θ < π) with respect to the local line of declination at the center of the
ellipse. The arc-length of the semi-minor axis is given by the valueφminor

a and that
of the semi-major axis is given byφmajor

a .

The celestial coordinate(αa, δa) corresponds to a unit-vector̂pa on the celestial
sphere with coordinates given by

p̂a = x̂ cos αa cos δa + ŷ sin αa cos δa + ẑ sin δa. (31)

Conversely, a unit vector̂pa corresponds to the celestial coordinate

(αa, δa) =
(

tan−1
(p̂a · ŷ)

(p̂a · x̂)
, sin−1(p̂a · ẑ)

)

, (32)

which is the inverse of equation (31).

An orthonormal coordinate system is defined at the point represented bŷpa con-
sists of the three unit vectorŝpa, α̂a, andδ̂a where

α̂a = −x̂ sin αa + ŷ cos αa (33)

and
δ̂a = −x̂ sin δa cos αa − ŷ sin δa sin αa + ẑ cos δa. (34)

Note that̂δa points along the direction of increasing declination at thepositionp̂a,
whereasα̂a points in the direction of increasing right-ascension. Thesemi-major
axis of the confidence ellipse associated with this positionmakes an angleθa with
respect toδ̂a. The sign ofθa is in accordance with the right hand rule with−p̂a as
the rotation axis. Forθa = 0, the “positive” end of the semi-minor axis will have
coordinates(αa + φminor

a , δa) and correspond to a unit vectorp̂minor
a , whereas the

“positive” end of the semi-major axis will lie at(αa, δa + φmajor
a ) and correspond

to the unit vector̂pmajor
a . Forθa = 0, these unit vectors are given by an equation of

the same form as equation (31). The vectors that correspond to non-zero values
of θa may be obtained by rotating theθa = 0 values about the−p̂a axis by the
angleθa. This operation is most easily carried out in the local coordinate basis
(α̂a, δ̂a, p̂a) producing

p̂minor
a = p̂a cos φminor

a + α̂a sin φminor
a cos θ − δ̂a sin φminor

a sin θ (35)
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and
p̂major

a = p̂a cos φmajor
a + α̂a sin φmajor

a sin θ + δ̂a sin φmajor
a cos θ. (36)

These two equations along with with equations (31), (33), and (34) are sufficient
to compute the unit vectors associated with the major and minor axes of the error
ellipses. The inverse relations are easily obtained by taking the appropriate dot-
products, producing

θ = tan−1

(

p̂major
a · α̂a

p̂major
a · δ̂a

)

= − tan−1

(

p̂minor
a · δ̂a

p̂minor
a · α̂a

)

, (37)

φmajor
a = cos−1(p̂major

a · p̂a), (38)

and
φminor

a = cos−1(p̂minor
a · p̂a). (39)

Let p̂0 denote the the position on the celestial sphere where a tangent plane is to
be erected. To minimize any distortion effects created whenmapping from the
celestial sphere onto the tangent plane,p̂0 will be taken as the arithmetic mean of
the ellipse centerŝpa, i.e.,

p̂0 =

∑

a p̂a

|
∑

a p̂a|
. (40)

A coordinate system may be given to the tangent plane with theorigin at p̂0 and
orthonormal basis vectorŝex and êy parallel to the local lines of right ascension
and declination at̂p0, i.e.,

êx = α̂0 = −x̂ sin α0 + ŷ cos α0 (41)

êy = δ̂0 = −x̂ sin δ0 cos α0 − ŷ sin δ0 sin α0 + ẑ cos δ0. (42)

Here,(α0, δ0) are the celestial coordinates that correspond top̂0.

The tangent plane projection ofp̂ is defined by

p̂t = p̂0 + xêx + yêy (43)

where(x, y) denote the tangent plane coordinates associated withp̂. It is a trivial
matter to show thatt = 1/(p̂ · p̂0),

x = (p̂ · p̂0)(p̂ · êx), (44)
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and
y = (p̂ · p̂0)(p̂ · êy). (45)

It also follows from equation (43) that a point(x, y) in the tangent plane corre-
sponds to the unit vector

p̂ =
p̂0 + xêx + yêy
√

1 + x2 + y2
. (46)

Note that the mapping from̂p to (x, y) is non-linear. The source of the non-
linearity is the factor̂p · p̂0, which represents the cosine of the angle betweenp̂
andp̂0. Since this angle is expected to be small, e.g.,< 10 arc-minutes, the effects
of this term may be ignored (cos 10′ ≈ 1 − 4 × 10−8). Now consider two vectors
p̂1 and p̂2 with an angleξ between them such that̂p1 · p̂2 = cos ξ, and let their
tangent plane coordinates be(x1, y1) and(x2, y2), respectively. Then in the small
angle regime wherêp · p̂0 may be taken to be 1,

p̂1 − p̂2 = (x1 − x2)ê1 + (y1 − y2)ê2 (47)

and
|p̂1 − p̂2| =

√

(x1 − x2)2 + (y1 − y2)2. (48)

If the angle between̂p1 andp̂2 is ξ, then

|p̂1 − p̂2| =
√

2(1 − cos ξ)

= ξ + O(ξ3),
(49)

which shows that in the small angle regime, the arc-length between two celestial
coordinates is equal to the distance between the tangent plane projections of those
coordinates. This means that the arc-lengths of the semi-major and minor axes
of the error ellipses will be preserved to sufficient accuracy by the tangent plane
projection.

Armed with these relations, it is easy to compute the tangentplane projections of
the error ellipses. The tangent plane coordinate(xa, ya) of the center of theath
ellipse follows from equations (44) and (45), i.e.,

xa = (p̂a · p̂0)(p̂a · êx) (50)

and
ya = (p̂a · p̂0)(p̂a · êy), (51)
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where p̂a is given by equation (31). Similar equations give the tangent plane
coordinates that correspond to the end-point positionsp̂major

a and p̂minor
a of the

semi-major and semi-minor axes of the ellipse. Denoting these coordinates as
(xmajor

a , ymajor
a ) and (xminor

a , yminor
a ), the lengths of the semi-major and semi-minor

axes in the tangent plane are given by

σ′

2
=

√

(xmajor
a − xa)2 + (ymajor

a − ya)2 (52)

and
σ′

1
=

√

(xminor
a − xa)2 + (yminor

a − ya)2, (53)

respectively. Here, the symbols representing these lengths have been chosen to be
consistent with equation (25). As noted above, the lengths of the semi-major and
minor-axes in the tangent plane should differ by a negligible amount from those
of the celestial system, assuming the small angle approximation. In contrast, the
angle that the semi-major axis makes with respect to the local line of declination
will differ between the two systems, particularly when the ellipse is located near
the poles of the celestial sphere. The angle as seen in the tangent plane is

θ′a = tan−1

(

xmajor
a − xa

ymajor
a − ya

)

. (54)

From equations (52), (53), and (54), it is easy to show that the inverse relations
are

(xmajor
a , ymajor

a ) = (xa + σ′

2
sin θ′a, ya + σ′

2
cos θ′a), (55)

and
(xminor

a , yminor
a ) = (xa + σ′

1
cos θ′a, ya − σ′

2
sin θ′a), (56)

and from these the corresponding unit vectors may be obtained through the use of
equation (46).

6 Summary

Equations (50), (51), (52), (53), and (54) constitute a set of equations that may
be used to map error ellipses from the celestial system onto acommon tangent
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plane, whose location is given by equation (40). Once projected to the tangent
plane, covariance matrices may be computed using equation (27), permitting the
error ellipses to combined via equation (24). This process produces the geometric
parameters of a combined error ellipse on the tangent plane.The mapping of the
error ellipse from the tangent plane back to the celestial system may be carried
out using equations (37), (38), (39), (46), (55), and (56).

The weighting procedure as proposed here for the problem of combining error el-
lipses is not new. Equation 22 appears to be the basis for merging source positions
for the 2MASS catalog as described in [1]. However, no mention of where this
equation comes from is given. This problem was also dealt with by Orechovesky
[2] in 1996 for military purposes involving geographic locations. His formalism
make use of Bayesian methods and Gaussian statistics. In fact, equation (22) can
be derived very simply by assuming a (multivariate) Gaussian probability distribu-
tion and demanding that the likelihood be a maximum. In contrast, the minimum-
variance derivation of equation (22) presented in section§3 makes no reference to
Gaussian statistics, and as such may be of more general validity.

A Appendix

This appendix contains provides the code forS-Lang implementation of the algo-
rithm proposed in this memo. The program is anslsh script that loads a data file
of input ellipses and writes out the combined result.

For example, consider the three input ellipses described bythe following data file:

# alpha delta semi-major semi-minor theta
# [deg] [deg] [arc-min] [arc-min] [deg]

30 71.6 50 24 18
29.2 71.7 23 16 27
30.3 72.3 47 5 -56

Running theslsh script produces the following output for the combined ellipse:
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Figure 1:The input ellipses are shown in green and the resulting combined ellipse is in
red. Thex andy values represent tangent plane coordinates (arc-minutes).

alpha: 30.393794 degrees
delta: 72.236735 degrees
theta: -55.582039 degrees
major: 12.944511 arc-min
minor: 4.854415 arc-min

The input ellipses (green) and the combined ellipse (red) are shown in Figure 1.
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#!/usr/bin/env slsh
require ("readascii");

% This structure will be used to hold information about each e llipse
private variable Ellipse_Type = struct
{

alpha, delta, phi_major, phi_minor, theta_cel, % celestia l
x, y, sigma_major, sigma_minor, theta, % tangent plane
p_hat, alpha_hat, delta_hat, p_major, p_minor

};

private define dotprod (x, y)
{

return sum(x * y);
}
private define norm (x)
{

return sqrt (sum(x * x));
}

private define new_ellipse (alpha, delta, phi_major, phi_ minor, theta_cel)
{

variable e = @Ellipse_Type;
e.alpha = alpha;
e.delta = delta;
e.phi_major = phi_major;
e.phi_minor = phi_minor;
e.theta_cel = theta_cel;
variable ca=cos(alpha), cd=cos(delta), sa=sin(alpha), s d=sin(delta);
e.p_hat = [ca * cd, sa * cd, sd]; % eq 31
e.alpha_hat = [-sa, ca, 0]; % eq 33
e.delta_hat = [-sd * ca, -sd * sa, cd]; % eq 34
e.p_minor = e.p_hat * cos(phi_minor)

+ e.alpha_hat * sin(phi_minor) * cos(theta_cel)
- e.delta_hat * sin(phi_minor) * sin(theta_cel); % eq 35

e.p_major = e.p_hat * cos(phi_major)
+ e.alpha_hat * sin(phi_major) * sin(theta_cel)

+ e.delta_hat * sin(phi_major) * cos(theta_cel); % eq 36

return e;
}

private define get_tangent_plane_from_vector (p0)
{

variable alpha0 = atan2 (p0[1], p0[0]);% eq 32
variable delta0 = asin (p0[2]);
variable ex_hat = [-sin(alpha0), cos(alpha0), 0]; % eq 41
variable ey_hat = [-sin(delta0) * cos(alpha0),

-sin(delta0) * sin(alpha0), cos(delta0)]; % eq 42
return p0, ex_hat, ey_hat;

}

private define get_tangent_plane_from_ellipses (ellips es)
{

variable p0 = 0;
foreach (ellipses)

{
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variable e = ();
p0 += e.p_hat;

}
p0 /= norm (p0); % eq 40
return get_tangent_plane_from_vector (p0);

}

private define project_ellipse (e, p0_hat, ex_hat, ey_hat )
{

variable p, p_dot_p0;
variable xa, ya, xa_major, xa_minor, ya_major, ya_minor;

p = e.p_hat;
p_dot_p0 = dotprod (p, p0_hat);
xa = p_dot_p0 * dotprod (p, ex_hat); % eq 50
ya = p_dot_p0 * dotprod (p, ey_hat); % eq 51

p = e.p_major;
p_dot_p0 = dotprod (p, p0_hat);
xa_major = p_dot_p0 * dotprod (p, ex_hat); % eq 50
ya_major = p_dot_p0 * dotprod (p, ey_hat); % eq 51

p = e.p_minor;
p_dot_p0 = dotprod (p, p0_hat);
xa_minor = p_dot_p0 * dotprod (p, ex_hat); % eq 50
ya_minor = p_dot_p0 * dotprod (p, ey_hat); % eq 51

e.x = xa;
e.y = ya;
e.sigma_major = hypot (xa_major-xa, ya_major-ya); % eq 52
e.sigma_minor = hypot (xa_minor-xa, ya_minor-ya); % eq 53
e.theta = atan2 (xa_major-xa, ya_major-ya); % eq 54

}

private define deproject_ellipse (e, p0, ex_hat, ey_hat)
{

variable p = p0 + e.x * ex_hat + e.y * ey_hat;
p /= norm(p); % eq 46
e.p_hat = p;
e.alpha = atan2 (p[1], p[0]); % eq 32
e.delta = asin (p[2]);

variable x_major = e.x + e.sigma_major * sin(e.theta); % eq 55
variable y_major = e.y + e.sigma_major * cos(e.theta);
p = p0 + x_major * ex_hat + y_major * ey_hat;
e.p_major = p/norm(p); % eq 46

variable x_minor = e.x + e.sigma_minor * cos(e.theta); % eq 56
variable y_minor = e.y - e.sigma_minor * sin(e.theta);
p = p0 + x_minor * ex_hat + y_minor * ey_hat;
e.p_minor = p/norm(p); % eq 46

variable ca=cos(e.alpha), cd=cos(e.delta);
variable sa=sin(e.alpha), sd=sin(e.delta);
e.alpha_hat = [-sa, ca, 0]; % eq 33
e.delta_hat = [-sd * ca, -sd * sa, cd]; % eq 34
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% Equations 37, 38, 39
e.theta_cel = atan (dotprod (e.p_major, e.alpha_hat)

/ dotprod (e.p_major, e.delta_hat));
e.phi_major = acos (dotprod (e.p_major, e.p_hat));
e.phi_minor = acos (dotprod (e.p_minor, e.p_hat));

}

% Implements eq 27
private define ellipse_to_correlation_matrix (e)
{

variable sigy2 = e.sigma_majorˆ2, sigx2 = e.sigma_minorˆ2 ;
variable c = cos(e.theta);
variable s = sin(e.theta);
variable c2 = c * c, s2 = s * s;

variable sx2 = sigx2 * c2 + sigy2 * s2;
variable sy2 = sigx2 * s2 + sigy2 * c2;
variable rho_sxsy = c * s* (sigy2-sigx2);

return _reshape ([sx2, rho_sxsy, rho_sxsy, sy2], [2,2]);
}

% Implements equations 28, 29, 30
private define correlation_matrix_to_ellipse (matrix, x 0, y0)
{

variable sx2 = matrix[0,0];
variable sy2 = matrix[1,1];
variable rho2_sxsy = 2 * matrix[0,1];
variable sum = sy2+sx2;
variable diff = sy2-sx2;

variable e = @Ellipse_Type;
e.x = x0, e.y = y0;
e.theta = 0.5 * atan2 (rho2_sxsy, diff);
diff = hypot (diff, rho2_sxsy);
e.sigma_major = sqrt (0.5 * (sum + diff));
e.sigma_minor = sqrt (0.5 * (sum - diff));
return e;

}

private define inverse_2x2 (a)
{

variable det = a[0,0] * a[1,1] - a[0,1] * a[1,0];
if (det == 0.0)

throw RunTimeError, "matrix is singular";
variable a1 = Double_Type[2,2];
a1[0,0] = a[1,1];
a1[0,1] = -a[0,1];
a1[1,0] = -a[1,0];
a1[1,1] = a[0,0];
return a1/det;

}

% Implememts eq 24
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define combine_ellipses (es)
{

variable num = length(es);
variable Cinv = 0;
variable mu = 0;
_for (0, num-1, 1)

{
variable i = ();
variable e = es[i];
variable C_m = ellipse_to_correlation_matrix (e);
variable Cinv_m = inverse_2x2 (C_m);
mu += Cinv_m # [e.x, e.y];
Cinv += Cinv_m;

}
variable C = inverse_2x2 (Cinv);
mu = C # mu;
return correlation_matrix_to_ellipse (C, mu[0], mu[1]);

}

define slsh_main ()
{

variable alphas, deltas, phimajors, phiminors, thetas;

if (__argc != 2)
{

() = fprintf (stderr, "Usage: %s ellipse.dat\n", __argv[0] );
exit (1);

}

variable infile = __argv[1];
variable num =

readascii (infile, &alphas, &deltas, &phimajors, &phimin ors, &thetas);

% convert to radians
variable rad_per_deg = PI/180.0;
alphas * = rad_per_deg;
deltas * = rad_per_deg;
phimajors * = rad_per_deg/60.0;
phiminors * = rad_per_deg/60.0;
thetas * = rad_per_deg;

variable i, e, ellipses = {};
_for i (0, num-1, 1)

{
e = new_ellipse (alphas[i], deltas[i], phimajors[i],

phiminors[i], thetas[i]);
list_append (ellipses, e);

}

variable p0, ex_hat, ey_hat;
(p0, ex_hat, ey_hat) = get_tangent_plane_from_ellipses ( ellipses);

foreach e (ellipses)
project_ellipse (e, p0, ex_hat, ey_hat);

variable new_e = combine_ellipses (ellipses);
deproject_ellipse (new_e, p0, ex_hat, ey_hat);
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() = fprintf (stdout, "alpha: % 11.6f degrees\n", new_e.alp ha/rad_per_deg);
() = fprintf (stdout, "delta: % 11.6f degrees\n", new_e.del ta/rad_per_deg);
() = fprintf (stdout, "theta: % 11.6f degrees\n", new_e.the ta/rad_per_deg);
() = fprintf (stdout, "major: % 11.6f arc-min\n", new_e.phi _major/rad_per_deg * 60.0);
() = fprintf (stdout, "minor: % 11.6f arc-min\n", new_e.phi _minor/rad_per_deg * 60.0);
exit (0);

}

References

[1] http://www.ipac.caltech.edu/2mass/releases/allsky/d oc/seca6_2.html

[2] Joseph R. Orechovesky Jr, Single Source Error Ellipse Combination, 1996
Master’s Thesis, Naval Postgraduate School, Monterey California

17


