— Aperture Photometry algorithm uses counts n_s , n_b in source and background regions, psf fractions f_s , f_b , average exposure map values E_s , E_b , and region areas A_s , A_b to compute posterior probability distribution for source photon flux.

$$P(s, b \mid n_s, n_b, f_s, f_b, E_s, E_b, A_s, A_b) = K P(s) P_{Poisson}(n_s \mid f_s, E_s, A_s) P(b) P_{Poisson}(n_b \mid f_b, E_b, A_b)$$

$$P(s \mid ...) = \int_0^\infty P(s, b \mid ...) db$$

$$\int_0^\infty P(s \mid ...) ds = 1$$

$$P(s) = constant (flat, or non - informative, prior)$$

— For each obsid, do this for each energy band (5 for ACIS) and for source and 90% ECF regions (aperture types).

- Report mode and 68 % percentiles for each band, region, obsid in database

- Many sources observed more than once

 Want to combine results from multiple obsids into a single "master source" flux, using the individual obsid results (or at least the same formalism)

- In Release 1, combined data from all the apertures

$$N_s = \sum n_{s_i} F_s = \sum f_{s_i} E_s = \sum E_{s_i} etc.$$

- Worked OK, but had some disadvantages
 - didn't incorporate upper limits
 - difficult to combine data on aperture areas
 - for variable sources, didn't match intuitive variance-weighted mean

— For Release 2, use different approach - use posterior P(s|...) from obsid 1 as prior P(s) for obsid 2

- Advantages
 - Upper limits easily incorporated, as long as aperture photometry results are available for non-detections
 - No approximations about 'average' apertures needed
- Disadvantages
 - Where to start in combining obsids? Need to decide how to order results from individual obsids.
 - For variable sources, posterior pdf for one obsid may not be a good candidate for prior for another obsid.

- Order individual obsid results by time. Choose this rather than flux to ensure results represent an actual physical state of the source.
- Divide obsids into blocks, within which a constant source flux is consistent with photometry results from individual obsids.
- Use Bayesian Blocks algorithm of Scargle et al. 2013, "STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. VI. BAYESIAN BLOCK REPRESENTATIONS", (2013ApJ...764..167S).

$$P(\{B_i\} | O_j) = P(N_{blocks}) \prod_{i=1}^{N_{Blocks}} F(B_i | O_j \in B_i)$$
$$P(N_{Blocks}) \sim \gamma^{N_{Blocks}}$$
$$F(B_i | O_j \in B_i) = \int_0^\infty ds \left[\prod_{j \mid O_j \in B_i} P(s_j \mid \dots) \right]$$

- Assumptions:
 - In any given block, obsids are sequential in time, although they may be separated by arbitrary gaps
 - $N_{Blocks} < N_{Obsids} \ (0 < \gamma < 1)$
 - Data from different energy bands sum in computing F
- Select $\{B_i\}$ that maximizes $log[P(\{B_i\} | O_j)]$:

$$log[P(\{B_i\} | O_j)] = N_{Blocks} log\gamma + \sum_{i=1}^{N_{Blocks}} log[F(B_i)]$$
$$= \sum_{i=1}^{N_{Blocks}} [log[F(B_i)] - ncprior]$$

$$ncprior = |log(\gamma)|$$

- Parameter *ncprior* determined from simulations.
- Details in routines get_blocks.py and get_Fitness.py.

- Example: Simulate same source in 10 obsids, with times randomly sampled from uniform distribution between 0 and 1.0, and source counts randomly sampled from Poisson distribution with means given by the following profile:

t	Counts
$0 \le t < 0.333$	10
$0.333 \le t < 0.667$	100
$0.667 \le t < 1.0$	30

Number of Cells: Background Density: Source Position:		10 0.025000 (57.548635,66.938363)											
Cell	Start Time	Counts	PDF Mo	de	CL lo				CL hi			Actual	CL
1	0.495572	100.00	95.808		85.591			106.737			0.686		
2	0.466260	100.00	101.537		91.151			112.903			0.686		
3	0.883630	30.00	24.534		19.465			30.467			0.687		
4	0.323591	10.00	5.487		3.027			8.865			0.698		
5	0.953232	30.00	34.743		28.564			41.464			0.685		
6	0.699711	30.00	35.816		29.631				42.731			0.685	
7	0.912493	30.00	32.604		26.765				39.255			0.685	
8	0.881968 30.00		34.619	28.564				41.464			0.685		
9	0.180941	10.00	8.679			5.621			12.709			0.697	
10	0.412023	12023 100.00 96			6.814 86.510					108.137			
0.180941	10												
0.323591	10												
0.412023	100												
0.40020	100												
0.495572	2 100												
0.099711	L 30												
0.001900	30												
0.00303	30												
0 053232	2 30												
Evaluati	na neprior												
ncprior	0	change points:	0	1	2	3	4	5	6	7	8	9	
ncprior:	1	change_points:	õ	1	2	3	4	5	6	7	8	9	
ncprior:	2	change points:	ø	2	5	-		-	-		-	-	
ncprior	3	chanae_points:	0	2	5								
ncprior:	4	change_points:	0	2	5								
ncprior:	5	change_points:	0	Z	5								
ncprior:	6	change_points:	0	2	5								
ncprior:	7	change_points:	0	2	5								
ncprior:	8	change_points:	0	2	5								
ncprior:	9	change_points:	0	2	5								

Draft Specification

- For each master source:
 - 1. For each aperture type (source or ecf90):
 - a) collect posterior probability distributions for all contributing obsids (from all contributing cohorts), together with aperture data (counts, psf fractions, expmaps, etc.)
 - b) order pdfs by time of obsid
 - c) compute blocks and report time of first obsid in each block
 - d) Within each block:
 - i. For each band
 - A. re-order obsids by net source counts
 - B. use pdf for lowest net count obsid as prior probability distribution for next lowest obsid, and re-compute pdf
 - C. iterate until all obsids in block are used
 - e) Select one block as representative and report in DB
 - i. mode and percentiles of resultant pdfs from previous step as master source flux and confidence bounds (per band)
 - ii. some (TBD) number or numbers to describe block (total exposure, duration, etc.) (per block)
 - iii. obsids that contribute to representative block
 - f) output to fits file pdfs from step 1 d (intensity array and pdf array, per band, per block)

Impact on CSC Products

- Master source flux and 68% percentiles are already reported per band per aperture type no additional burden
- At least 1 additional (double) column for block description for each aperture type
- Either 1 additional column containing variable-sized array of contributing obsids for each aperture type, or some other way of describing the relation, similar to master source - per obsid source association
- Inter-observation light curves are already provided per band; no additional burden on number of files (unless each aperture type is saved in separate file), but now each file will include intensity and pdf arrays per block; arrays are typically 50 doubles each; also should include start time and total exposure of each block.

Outstanding Issues

- Determine *ncprior*
 - Simulations running; preliminary results available for null case (no variability)

- need to explore how ncprior depends on source counts, number of obsids, different variability profiles
- need to verify that multiple bands can be analyzed together (one block rules all the bands)
- need to define fall-back option in case step 1.d.i. in draft spec fails
- need to decide how to select "representative" block (longest exposure, longest duration, brightest, etc.) and what data are used to describe them in the DB
- need to define actual structure of output data files (assumed 1 file per band, 1 row per block with variable-length arrays)
- need to decide whether both aperture types need to be included

get_Fitness.py

```
def get_Fitness(pdfs,nsteps=1000):
    Determine cumulative fitness functions for a range of pdfs, input as a list with
   pdfs[i][0] = start time of cell
   pdfs[i][1] = array of intensity values s at which pdf is evaluated
   pdfs[i][2] = array of pdf values for that cell
    The pdf is normalized such that sum(pdf)*(s[1]-s[0]) = 1
    .....
    import numpy as np
    mins=[]
    maxes=[]
   npdfs = len(pdfs)
   F = np.zeros(npdfs)
   # First, find range of all the s arrays
    for i in range(0,len(pdfs)):
       mins.append(pdfs[i][1][0])
       maxes.append(pdfs[i][1][-1])
   # and use that to define new intensity grid s
   s0 = np.min(mins)
   s1 = np.max(maxes)
   ds = (s1-s0)/nsteps
   sint = np.arange(s0,s1,ds)
   # Build fint, the integrand of F, which is the product of the regridded pdfs. Start with fint set to 1
   # and work backwards, so that F includes the last pdf only the first time through the loop, then the
   # last two, etc. until it includes them all.
    fint = np.ones(len(sint))
    for i in range(0,npdfs):
       j = npdfs - i - 1
       pint=np.exp(interpolate(pdfs[j][1],np.log(pdfs[j][2]),sint))
       pint /= (sum(pint)*ds)
       fint *= pint
       F[j] = sum(fint) * ds
   return np.log10(F)
```

get_blocks.py

def get_blocks(pdf_list,ncprior):
 """
 Determine change-points for Bayesian Blocks
Input:

The optimal partition for the starting case of the first cell only has a best fitness function of # -ncprior, since the marginalized likelihood is 1 for single normalized pdf. The location of the # first change-point is the beginning of the list, or index 0

```
best = np.array(-ncprior)
last = np.array(0)
```

```
# Now need to construct A(r)
```

```
for R in range(1,ncells):  # Skip the first cell since we already know the results for it
    F = get_Fitness(pdf_list[0:R+1])
    A = np.append(0,best) + F - ncprior
    best = np.append(best,A.max())
    last = np.append(last,A.argmax())
```

Once all ncells have been considered, reconstruct change-points from 'last' array:

```
change_points = []
cpindex = last[-1]
```

```
while cpindex > 0 :
    change_points.insert(0,cpindex)
    cpindex = last[cpindex-1]
```

above gets everything except the first one

```
change_points.insert(0,last[0])
```

return change_points