
Yaxx Reference Manual
Table of Contents

1 Overview
2 Analysis Root Directory
3 Input Data

3.1 Chandra Data
3.2 XMM Data

4 Object List File
4.1 Examples
4.2 Yaxx columns
4.3 Non-yaxx columns
4.4 Object List File Format

5 Configuration Files
5.1 Configuration file hierarchy
5.2 Configuration file format

6 Run yaxx
6.1 Reprocessing
6.2 Spectral fitting with Sherpa
6.3 Command line options
6.4 Pausing yaxx

7 Yaxx Output Data Files
7.1 Further analysis in Sherpa
7.2 HTML and postscript summary reports

8 Processing results FITS table
9 Citation
10 Related software

10.1 ACIS Extract
10.2 Xassist

11 Copyright and Licence
12 Acknowledgments
13 Appendix

13.1 Configuration file macro substitutions
13.2 Configuration parameters

1 Overview
This document describes the yaxx tool. It includes discussion of usage, configuration parameters, and
analysis results. For a quick start guide including a tutorial example see the quick start guide. For
installation instructions see the installation guide. Throughout this document the variable $YAXX is
assumed to be the directory in which yaxx was installed.

Yaxx is a Perl script that facilitates batch spectral processing of X-ray data using Perl open source tools
and commonly available astronomical software (CIAO, SAS, HEAsoft). It includes automated spectral
extraction, fitting, and report generation. The primary emphasis is on having a simple tool that can be
run without requiring an extensive learning curve. However, for those with the motivation, yaxx is

http://cxc.harvard.edu/ciao/
http://xmm.vilspa.esa.es/sas/
http://heasarc.gsfc.nasa.gov/lheasoft/

highly configurable and can be customized to support complex analysis. In particular the yaxx
processing flow is fully configurable, easily allowing automation of data reduction steps. Yaxx
includes default processing threads and output templates for Chandra and XMM spectral analysis.

The basic analysis flow using yaxx is for X-ray spectral analysis:

Create a yaxx analysis root directory
Assemble input data in directories organized by ObsId
Create an object list file defining sources to be processed
Adjust configuration files, for instance

Define processing thread (e.g. Chandra or XMM)
Define data input and output directories
Define spectral fit models
Change data grouping specifications
Change fit method and statistic

Run yaxx
Examine analysis output data files and results summary
Generate summary fit results data table as a FITS file
Publish and cite yaxx

This manual is organized by describing each of the components in the analysis flow given above.
Much of the detailed functionality of yaxx is specified by the configuration parameters. To avoid
getting bogged down, throughout the manual we refer to relevant parameters in general terms, while
the details are given in the alphabetically organized Configuration Parameters section.

Throughout this document the variable $YAXX is assumed to be the directory in which yaxx was
installed. For instance, if you install yaxx in your home directory as shown in the installation guide,
you would do (for csh or tcsh):

set YAXX=~/yaxx

2 Analysis Root Directory
Yaxx is run from an analysis root directory that should be distinct from the $YAXX source installation
directory. The analysis directory contains the project configuration parameters, the object list file, and
the output analysis products in subdirectories by ObsId. These are each described in subsequent
sections.

3 Input Data
The location of input data (event files and other files required for data processing and analysis) is
defined by the input_dir configuration parameter. In general input_dir can specify either an absolute or
relative path name, and includes specification of the ObsId formatting (for instance whether the
ObsIds are 5 digits with leading zeroes).

It is worth noting a distinction between the input_dir and the output_dir parameters. The former is a
direct specification of the input data directory for a given ObsId, while the latter is a specification of
the root directory within which output data for all ObsIds will be stored.

3.1 Chandra Data
The Chandra input data for running yaxx with the default Chandra thread are:

ACIS event file (acis?*_evt2.fits*) [required]
Aspect solution file or files (pcad?*_asol1.fits*) [required]
Source detect file (acis?*_src2.fits*) [optional]
ACIS bad pixel file (acis?*_bpix1.fits*) [optional]

The typical configuration is that yaxx looks in the analysis directory in sub-directories named
obs<ObsId> .

The input file names which yaxx searches for are given by the four "glob" parameters evt2_glob ,
asol_glob , src2_glob , and badpix_glob . Each of these specify a file match template using
the Unix wildcard characters ’*’ and ’?’. The default values listed above match the file naming
convention for data downloaded from the Chandra archive and allow for gzipped files.

When starting to use yaxx one should decide whether to store the input data in a separate repository or
to have the input data co-located with the analysis results. The latter is selected by default. This is a
matter of preference, but if you foresee defining different samples or different projects based on a
common set of data then it makes sense to use a distinct data repository.

Yaxx can handle input data files that are gzipped, but for processing efficiency (to avoid repeatedly
unzipping a large event file) it always works with an unzipped version on disk. Thus if the input file is
gzipped yaxx will generate a local unzipped version. In general the best practice is to unzip the input
data files in which case yaxx simply creates a link to the file.

One caveat when input data are stored in the same directories as the output results is that yaxx will
create files named acis_evt2.fits , pcad_asol1.fits , acis_src2.fits and
acis_bpix1.fits . It is important that the input data files and file template parameters do NOT
match those names. If the default settings are used there will be no conflict.

Note that the requirement of supplying aspect solution files is expected to be removed as support for
the specextract tool is added to yaxx.

3.2 XMM Data
As for Chandra the input data directory for XMM is given by the input_dir parameter. However, due
to the nature of XMM data reduction within SAS there is little flexibility in the input file naming
convention and none of the _glob parameters described for Chandra data are meaningful. For the
default XMM thread configuration it is assumed that an ODF directory exists within the given ObsId
directory and contains the ODF files from the XMM archive, . If the ObsId directory is named simply
as the 10-digit ObsId value within the analysis directory (recommended) , then the corresponding
input_dir and output_dir values would be:

 input_dir = %s # Input data directory
output_dir = ./ # Output data directory

4 Object List File
The list of ObsIds and sources, along with other source-specific information such as position and
redshift, is specified as tabular data in the object list file. The name of the file is given by the
objlist parameter. The format of this file can be FITS, RDB, HTML, or ASCII (with several
common column delimiters supported). Yaxx will automatically detect the table format and read the
table. Details on the table format are given in the Object List File Format subsection.

As an example, an ASCII table could consist of the following lines:

obsid src redshift X Y object
3102 1 0.32 4167 4085 Q1250+568
 877 1 0.22 4200 4102.1 ’Source 82’

This is a space-delimited table and indicates that the first source is named Q1250+568 with physical
sky coordinates (4167,4085). Any fits that rely on a redshift will use 0.32. The second source is
"Source 82". Note the quotes for this space-delimited file. In an RDB (tab-separated) file the quotes
would be unnecessary.

For the XMM data processing the 4-digit value of the orbit is also required, so an example object list
file would be:

obsid orbit ra dec
0147511101 0526 163.58804 57.42903
0147511201 0527 163.58804 57.42903

The only columns in the object list file that are always required are the obsid , and the orbit for
XMM data. However, yaxx must be told where the sources are by one of three methods:

Specify the physical sky coordinates in columns X and Y
Specify the RA and Dec in columns ra and dec
Supply a wavdetect or celldetect FITS file (e.g. acis*src2.fits from the Chandra primary
products), and do NOT include any of the columns X, Y, ra , or dec . In this case you typically
supply a src number to indicate which source the file to process (see examples below).

Although the object list file can contain multidimensional columns (e.g. the R[2] column in a
celldetect FITS file), those columns are not read into the source data structure.

4.1 Examples

No source number

The src column is not required. In this case the source numbers are automatically incremented from
1 for each ObsId:

obsid redshift X Y object
3102 0.32 4167.4 4085.2 Q1250+568-A
3102 0.32 4706.4 3916.7 Q1250+568-B
 877 0.22 4378.5 3892.4 ’Source 82’

Using detect file with source number
obsid src redshift object
3102 2 0.32 Q1250+568-B
 877 3 0.22 ’Source 82’

The src field given here corresponds to the component column in CIAO wavdetect or celldetect
files. The name of this column is defined by the src_column_name configuration parameter.

Using detect file with no source number

All sources in the detect FITS file which have net_counts >= min_counts (yaxx parameter) will
be processed:

obsid redshift object
3102 0.32 Q1250+568
 877 0.22 ’Source 82’

Different delimiter

Here an ASCII data file uses the ’|’ character to mark the columns. In this case the extraction radius
(pixels) has been explicitly specified:

obsid | redshift | X | Y | object | rad
3102 | 0.32 | 4167 | 4085 | Q1250+568-A | 9
3102 | 0.32 | 4706 | 3916 | Q1250+568-B | 14
 877 | 0.22 | 4378 | 3892 | ’Source 82’ | 12.5

Minimal object list file

The minimal object list file consists of just the obsid and requires that a detect FITS file be
available:

obsid
 3102

This will process every source in the detect files for the specified list of ObsIds. A more typically
useful example is to include the src field as well to pick out the desired sources.

4.2 Yaxx columns
The column names below have special meaning in yaxx and are directly used in processing. The
names are case-sensitive.

obsid
Observation ID. In the case of non-X-ray data this is just a unique identifier for the data instance
being processed.

src
Yaxx source identifier which corresponds to the number in the source directory name. This must
be a positive integer. If not supplied then numbering within each ObsId starts at 1 and increments.

component
Synonym for src , which is useful if using a detect file as the object list. A detect file could be
produced by running wavdetect or celldetect , or be a Chandra source file (acis*src2.fits)

from standard processing.
X, Y

Physical sky coordinates (pixels) of the object. If not supplied, yaxx will use (ra, dec) or the
detect file to determine (X, Y). For non-X-ray data one currently has to supply some values of
(X, Y) even if meaningless, but the next release removes this requirement.

ra, dec
Celestial sky coordinates (degrees J2000) of the object. If not supplied, yaxx will use (X ,Y) or
the detect file to determine (ra, dec).

rad
Circular source extraction radius (pixels). If not supplied and no source region file is present,
yaxx will determine an extraction radius for each object based on the off-axis angle and the
psf_fraction and psf_energy parameters.

Of the columns listed above, only obsid is always required. If a column is supplied, then defined
values must be present for all sources (i.e. one cannot leave a numerical column value blank for any
sources).

4.3 Non-yaxx columns
All column data in the object list file is read in and associated with each object. Within the
configuration files those object data can be accessed with the syntax %VALUE{<col_name }%>. The
most common use for this is to supply fit model parameters specific to each object such as redshift,
Galactic column or abundance. For instance, the default absorbed power-law model in yaxx includes
the sherpa commands:

source = xsphabs[gal] * xszwabs[abs] * pow[pow1]
gal.nh = %VALUE{gal_nh}%
abs.redshift = %VALUE{redshift}%

This has the effect of setting the Galactic neutral hydrogen column and absorber redshift to the column
values of gal_nh and redshift in the object list file. Note that as a special case, if gal_nh is not
given then yaxx will automatically determine an appropriate value for an extragalactic source at the
given object sky position.

4.4 Object List File Format
FITS

This must be a FITS compliant table file (ASCII or binary). The first table in the file will be used.
The most common use of a FITS object list file would be celldetect or wavdetect source output
file.

ASCII
This must be a plain text file where the first non-comment line specifies the column names. Any
line with ’#’ as the first character is considered to be a comment. For an ASCII table yaxx
attempts to guess the column delimiter, trying (in order) Comma, Ampersand "&", Vertical bar
"|", Tab, and Whitespace. The first one which gives a sensible table is used. A "sensible table"
means that there are at least two columns and every row has the same number of columns. Within
the table one can use single or double quotes to have an entry that includes the column delimiter.

RDB
This must be a standard RDB format file, which has column names in the first row, column
formats in the second row, and tab separated values in subsequent rows. Any line with ’#’ as the
first character is considered to be a comment, but comments should not occur before the first two

rows.
HTML

This must be standard HTML (whatever that might be) with a table that can be parsed by the
HTML::TableParser routine. The first table in the file will be used.

5 Configuration Files
The operation of yaxx is controlled by configuration files that define variables and data structures used
by yaxx. In order to separate system parameters from those typically modified by users (while still
maintaining full configurability) yaxx reads a heirarchy of configuration files. In order of increasing
precedence these files are System, Analysis Thread, Project, ObsId, and Source. The System, Analysis
Thread, and Project files are required, while the ObsId and Source files are optional. Each
configuration file must be named yaxx.cfg , with the file location determining its scope.

The most commonly modified configuration file is the Project file. Some key parameters defined in
this file are:

mission Mission (can be Chandra or XMM)

thread Processing thread (Chandra , XMM, or user-defined thread)

input_dir Input data directory

output_dir Output data directory

objlist Object list file

fit_rules Specify which spectral models and fit scripts to use for each source based on criteria
such as number of counts

model Define spectral fit models

5.1 Configuration file hierarchy

System

System-wide configuration data located in the yaxx installation directory $YAXX. All yaxx runs read
this file, which for basic usage should not need modification. This file includes the default report
layout, file naming specifications, the basic sherpa fitting script, and a baseline set of fit models.

In most circumstances the the System level configuration file should not be directly modified. Instead

For basic usage of yaxx these parameters will not need to be adjusted. However, those doing more
sophisticated analyses or desiring to customize the fit script or output format will need to adjust these
parameters. This can be done on any of the System, Thread, or Project level files. If modifying the
System file it is recommended that the new specifications simply be added on the end of the file,
where they will override the supplied default values. This strategy will make it easier to retain
customizations when new versions of yaxx are released.

Analysis Thread

The thread configuration file has settings specific to the analysis thread. The standard threads supplied
with yaxx are Chandra and XMM, and define parameters such as the file_definition, source_image and
process_step. The latter is key as it fully defines the data processing flow for the thread. Users wishing
to alter the processing flow should copy the appropriate thread directory and modify the copy:

cd $YAXX/resources
cp -rp Chandra custom_chandra_thread # or XMM
emacs custom_chandra_thread/yaxx.cfg # Etc...

Project

The configuration file for each yaxx analysis "project" is located in the analysis root directory and
typically includes basic run parameters, custom fit models and rules, and report formatting rules. Any
item in the System or Thread yaxx.cfg files can be overridden here. Normally one would start a
project by copying the template Project config file $YAXX/User/yaxx.cfg into the analysis
directory and then modifying that file as needed.

ObsId

Configuration data specific to a particular ObsId, located in
<output_dir>/obs<obsid>/yaxx.cfg . This allows specification of different run parameters
for a particular ObsId.

Source

Configuration data specific to a particular source, located in
<output_dir>/obs<obsid>/src<srcid>/yaxx.cfg . One reason to use this is to change
the fit models for a particular source in the sample, for instance to add an iron line or fit a thermal
model. One could also create a source-specific fit model with particular starting fit parameters that
help with convergence. In large batch-fitting applications there are typically some oddballs that benefit
from fine tuning.

5.2 Configuration file format
These configuration files are specified in a simple format that allows for specification of both simple
parameter values as well as complex data structures. Users should have no difficulty modifying the
self-documented files by example, but for details refer to the Config::General documentation
contained in the yaxx installation:

perldoc $YAXX/yaxx-perl/Config/General.pm

Configuration examples and explanation

Set a single-valued parameter

verbose_stdout = 3 # Verbosity for terminal output (stdout)

Important Note: If a single-valued parameter is specified more than once within the same file,
then that parameter is interpreted by the configuration file parser as an array-valued parameter.
This will likely cause a crash of yaxx.

Set a multiline single-valued parameter

Use the "here-doc" notation to specify a multiline string. For instance a model specification could
be given by the following, which sets the model parameter pl to the multiline string enclosed by
the matching END_MODEL tags. The matching tag name END_MODEL is arbitrary as long as
it does not appear in the parameter string

pl <<END_MODEL
 source = pow[pow1] * xswabs[gal]
 gal.nh = %VALUE{gal_nh}%
 pow1.gamma.min = -1.5
 pow1.gamma.max = 3.5
END_MODEL

Set an array-valued parameter

Specify the parameter multiple times. As demonstrated here the "=" sign shown in previous
examples is optional.

summary_header_key_col RA
summary_header_key_col DEC
summary_header_key_col OBJECT
summary_header_key_col COUNTS

Create a complex nested structure

The example below creates a parameter named "formatting_rule" that has elements named
"ampl" and "cvrfract". Each of these has its own parameter values. These complex structures can
be modified or extended by example, taking care to maintain consistency with the existing
structure.

<formatting_rule ampl>
 fmt %.2f
 unit_latex 10^{-5}
 unit_html 10⁻⁵
 mult 1e5
 default 0.0
</formatting_rule>

<formatting_rule cvrfract>
 fmt %.2f
 default 1.0
</formatting_rule>

6 Run yaxx
Yaxx is run from the analysis root directory. For each source in the object list file the processing steps
defined by the process_step parameter are carried out. For the Chandra and XMM threads the major
steps are:

Make output directories if needed
Start a log file
Copy or link input data to analysis output directory
Make source and background extraction region files
Process event data as needed
Extract spectrum (PI or PHA file) from event data using psextract
Make image of source event data with PGPLOT
Fit specified models to spectral data using sherpa
Make report summary pages in HTML and LaTeX/postscript

A processing run is successful if yaxx completes all necessary steps and and makes the final report for
each source in the specified object list file. Underlying this definition is the idea of file dependencies,
which is a key concept in the yaxx processing. Each step is run only if the output files for that step are
non-existent or are older than the input files. This is similar to the way in which a software package is
compiled based on source file dependencies.

6.1 Reprocessing
The practical importance of the file dependence concept lies in processing moderate to large samples
of sources. It is inevitable that all or part of the sample will need to be reprocessed (probably many
times) in the course of doing a serious analysis and writing a paper. In the initial processing there are
often issues with one or more sources requiring some fine tuning. After the first look one often sees
that fit parameters need to be adjusted. As time passes the CALDB may be updated or after the paper
is written the referee may have suggestions about the data analysis.

Yaxx was specifically designed to facilitate reprocessing by examining file dependencies. Instead of
manually tracking which sources need to be processed, the normal method is to run yaxx on the entire
sample. Those with changed input files will be processed while those with no changes will be left
untouched.

A caveat to this dependence concept is that updates to the configuration parameters are not tracked. As
a consequence, accounting for parameter updates requires that a user manually force the appropriate
reprocessing. For example, if a fit model were updated then one would tell yaxx to force processing of
the fit by cleaning all the output products of the fit step before processing:

yaxx -preclean fit

If other ealier dependencies were also unmet the appropriate processing steps would be run as well.
The available options are listed in the -preclean command line option description.

6.2 Spectral fitting with Sherpa
Spectral fitting in Sherpa depends directly on the parameters listed below. Users should read the
documentation for each parameter and understand how they affect the final fit results.

fit_rules Specify which spectral models and fit scripts to use for each source based on
criteria such as number of counts

model Define spectral fit models

projection Calculate confidence intervals via Sherpa projection

uncertainty Calculate confidence intervals via Sherpa uncertainty

unbinned_method Fit method for unbinned spectra

unbinned_stat Fit statistic for unbinned spectra

binned_method Fit method for binned spectra

binned_stat Fit statistic for binned spectra

Note that the last four parameters (fit methods and statistics) are only used within the standard fit
scripts fit_grouped and fit_ungrouped supplied with yaxx. For user-defined fit scripts there
is no requirement that these parameters be examined, and indeed there is nothing magic in the
distinction between binned and unbinned.

Background subtraction and fitting

The standard fit_ungrouped template (which fits data without applying grouping) defines a
Sherpa background model and fits to the extracted background PI or PHA spectrum. This fitted
background model is then frozen for subsequent fitting of the extracted source region (which contains
source + background). The background model that is fit is simply a normalization factor times an
empirically derived 8th order polynomial with 6 added gaussians. The coefficients of the polynomial
and gaussians are frozen and have been set based on fitting (by the yaxx author) of ACIS
back-illuminated (S3) or front-illuminated background data (I2,I3,S2) background datasets from the
year 2000. These background models have been provided for the convenience of users, but we no
guarantees are made of their correctness or applicability to any particular analysis. Users are strongly
encouraged to investigate the background fitting and provide feedback to the yaxx author if
improvements are warranted.

The fit_grouped template uses the subtract command to subtract the extracted background
spectrum from the source spectrum before fitting. This works reasonably well for moderate to high
counts spectra and aids in the visual interpretation of spectral plots. However, there are good
arguments against doing background subtraction, and users should explore the literature and decide
what makes sense for their analysis. If background fitting is preferred, use the example of the
ungrouped commands to appropriately modify the grouped commands template.

6.3 Command line options
The available command line options when running yaxx are as follows.

-config <file>

Read the project-level configuration data from the specified file instead of the default yaxx.cfg in
the analysis directory.

-obsid <ObsId> [<ObsId2> ..]

Process only the specified ObsId or ObsIds. If multiple ObsIds are desired they must be in a quoted list
separated by space, e.g.

yaxx -obsid "1232 411 522"

-src <src> [<src2> ..]

Process only the specified source or sources. If multiple sources are desired they must be in a quoted
list separated by space.

-preclean <file_group> [<file_group> ..]

The typically used values for <file_group> are listed below. In addition, it is possible to specify any of
the file types given in the file_definition block of the system-level yaxx.cfg file. If multiple values are
specified they must be in a quoted list separated by spaces. The available <file_group> are:

all
Start from scratch by removing all output files. This does not touch the source and background
region files defined for each source since they may have been manually edited.

region
Remove the src.reg and bkg.reg region files in the source directory.

extract
Spectral extraction processing outputs

fit
Sherpa fitting outputs

source_image
Color 2-d image of source and extraction regions from PGPLOT

report
Final LaTeX/postscript and HTML reports

log
Log files kept in the source directory.

resources_dir
Directory containing local copies of yaxx resource files such as fit templates, report templates,
and HTML images.

-summary <model_name>

This is a special mode of yaxx that can be run after all processing has successfully completed and you
are happy with the results. For a given fit model, it creates a summary FITS file containing all of the
fit parameter values (with lower/upper limits), fit statistics, and object list data. The output is a file
named summ_<model_name>.fits . Because different models have different fit parameters, this
must be run separately for each fit model. For instance the command

yaxx -summary pl

will produce a file named summ_pl.fits with a row entry for each source that was fit with the pl
model.

6.4 Pausing yaxx
For very long processing runs yaxx can be told to pause its run in order to free up processor resources,
e.g. during the day when users are working interactively on the computer. This is done by creating a
file named yaxx_pause in either the home or analysis directories. This is most easily done with the
Unix touch command, which creates an empty file if none exists. Yaxx checks for this file at the
beginning of processing for each new source, and will wait until the file is removed before continuing.

7 Yaxx Output Data Files
The analysis data files associated with yaxx processing have (by default) the structure:

<output_dir>/obs<obsid>/src<src>

The files unique to an ObsId are stored in the obs<obsid> directory, and those unique to the
particular source are in the src<src> (i.e. the "source" directory). For the Chandra thread some of
the more useful files in the source directory are:

acis*.pi : The various pi (or pha) spectral files for fitting
acis*.rmf : RMFs
acis*.arf : ARFs
<fit_model>.in : Sherpa script used to fit <fit_model>, e.g. pl.in
<fit_model>.mdl: Sherpa MDL file for <fit_model>
report.html : Final fit summary report (HTML)
report.ps : Final fit summary report (postscript)
report.tex : Final fit summary report (latex)
log : Processing log. log<n> files are old logs

7.1 Further analysis in Sherpa
The <fit_model>.in file is a very useful starting point for doing more detailed or interactive
spectral fitting of a particular source. One can exactly recreate the yaxx fitting steps in sherpa by
doing:

cd obs3102/src1
sherpa
use <fit_model>.in

The Sherpa MDL file contains a full record of the fit for a particular model and can be used to easily
recover both the source data and final fit values. This allows the user to easily pick up with interactive
fitting from where the yaxx fit finished with the Sherpa command:

read mdl <fit_model>.mdl

7.2 HTML and postscript summary reports
Assuming the processing is successful, examine the results with:

firefox <output_dir>/report_index.html

where firefox can be replaced by the name of your favorite web browser. This shows the yaxx report
index which links to report pages for the individual sources. The report page shows a summary of the
source parameters, an image of the source and the extraction regions used, a table of spectral fit
results, and plots of the spectral model fits. If there are multiple sources then the individual reports are
linked together by the arrows in the upper left corner of each report.

A latex/postscript report is also created and can be viewed with:

gv obs<obsid>/src<src>/report.ps

The LaTeX fit parameter table within report.tex can conveniently be inserted into a manuscript to
create a table on spectral fit results.

8 Processing results FITS table
After successfully processing the entire sample it is possible to generate a FITS table with the results
of processing for each source in the sample. For a given fit model, yaxx will create a FITS file
containing all of the fit parameter values (with lower/upper limits), fit statistics, and object list data.
The output is a file named summ_<model_name>.fits . Because different models have different
fit parameters, this must be run separately for each fit model. For instance the command

yaxx -summary pl

will produce a file named summ_pl.fits with a row entry for each source that was fit with the pl
model.

9 Citation
If you make use of yaxx in analysis for published results, it is requested that you include an
appropriate citation. Shown below is an example if you are using the the natbib bibliographic package:

\bibitem[Aldcroft (2006)]{Aldcroft06} Aldcroft, T.L. 2006, Yaxx: a batch data processing tool for scientists.

At the point of citation please include a text footnote with the yaxx home page URL:

http://cxc.harvard.edu/contrib/yaxx

10 Related software

10.1 ACIS Extract
The ACIS Extract package http://www.astro.psu.edu/xray/docs/TARA/ae_users_guide.html is similar
to yaxx but is specifically focused on Chandra/ACIS data. Within that scope ACIS Extract has
well-developed functionality and documentation. For those working on Chandra data with access to
IDL this is certainly a tool that should investigated. Yaxx is a complementary tool, designed with an
emphasis on ease of use, user extensibility, and based on free open source software.

10.2 Xassist
Xassist (http://xassist.pha.jhu.edu/xassist/manual/xassist.html) is an X-ray extractor that can support
automated processing and limited spectral fitting of XMM and Chandra ACIS data. This NASA
funded project is based on Python scripts and compiled C/C++ code.

11 Copyright and Licence
Copyright (C) 2006 by the Smithsonian Astrophysical Observatory

This code is released under the GNU General Public License. You may find a copy at
http://www.fsf.org/copyleft/gpl.html.

12 Acknowledgments
TLA gratefully acknowledges support for the development of yaxx from NASA under NASA grant
NAS8-39073 and CXC archival research grant AR2-3009X. This project would not have been
possible without the substantial efforts of many perl module developers and maintainers of the CPAN.

13 Appendix

13.1 Configuration file macro substitutions
Yaxx includes a macro substitution capability that is used within the configuration files. This allows
the configuration values to reference yaxx file names (e.g. the X-ray event file for a source) or their
contents, source characteristics (e.g. the redshift or galactic column), a label for a source characteristic
(e.g. "Galactic Column" for the gal_nh parameter), or a specially defined value that is set within the
yaxx perl code.

The general format for macro substitutions is:

%MACRO_TYPE%
%MACRO_TYPE{var, MACRO_OPT=val,.., source_var=val,...}%

The macro must be written on a single line. The meaning and usage of the macro arguments are given
below.

http://www.astro.psu.edu/xray/docs/TARA/ae_users_guide.html
http://xassist.pha.jhu.edu/xassist/manual/xassist.html
http://www.fsf.org/copyleft/gpl.html

%FILE{<file_type>[.ext], MACRO_OPT=val,..., source_var=val,...}%

This macro returns the file name for the given <file_type> using the rules in the file_definition
parameter. An optional extension may be added to the <file_type>. For example
%FILE{report.html}% returns %FILE{report}% with the .html extension added. Setting a
source variable source_var=val allows a source characteristic to be temporarily set during the
evaluation of the macro. The most common use of this is in the XMM thread where the detector (PN,
MOS1, or MOS2) must be given for many of the detector-specific files. The available FILE_OPT
macro options are:

File Macro Options

Option Function

ABSOLUTE=1 Return an absolute file name instead of the default relative file name.

CONTENT=1 Return the contents of the file instead of the name.

PREFIX= <value> Put <value> before the file name. Note that the directory path to the file is
left unchanged.

SUFFIX= <value> Put <value> after the file name.

Examples:

%FILE{resources_dir}% # Directory containing yaxx resources
%FILE{source_image.jpg}% # JPEG version of source counts image
%FILE{pi,detector=mos1}% # MOS-1 PI spectrum file
%FILE{pi,PREFIX=.create_pi_}% # PI spectrum file prefixed with ’.create_pi_’
%FILE{src_reg, CONTENT=1}% # Contents of source extraction region file

%VALUE{var_name, MACRO_OPT=val,..., source_var=val,...}%
%FORMAT{var_name, MACRO_OPT=val,..., source_var=val,...}%

This macro returns the value of a source characteristic, which could be either input data explicitly
specified in the object list file (e.g. redshift, ra) or values that correspond to yaxx methods (e.g. counts,
exposure). The latter category includes all configuration parameters, but in general use of these in the
VALUE macro is for experts only. The FORMAT macro is just the VALUE macro with default
formatting selected with DEFAULT_FMT=1.

File Macro Options

Option Function

FORMAT=<format> Return the value as formatted with the sprintf style formatting specification.
See the sprintf man page for details.

DEFAULT_FMT=1 Use the default output format as defined by the formatting_rule for the
variable. If none is defined then no special formatting is applied. This option
overrides the FORMAT option.

Examples:

%VALUE{exposure, detector=pn}% # Exposure for the PN detector
%VALUE{redshift}% # Redshift from object list file
%VALUE{thread}% # Thread parameter from project config file
%VALUE{gal_nh}% # Galactic NH column (computed if not supplied)

%LABEL{var_name}%

This macro returns the label defined by the formatting_rule for the variable. No options are recognized
by this macro.

Examples:

%LABEL{srcid}% # Returns ’Source’
%LABEL{ccdid}% # Returns ’CCD’

13.2 Configuration parameters
Here we describe in detail each of the configuration parameters that control the behavior of yaxx.

allow_failed_fit

If the Sherpa fit for one model fails, continue with others. This is not generally recommended because
(if enabled) yaxx will report SUCCESS for source processing even in cases where a one or more fits
failed. [Project]

asol_glob

Name template for the required PCAD aspect solution file(s) in the input directory. This can match
multiple files in the input directory, in which case the files will be concatenated in order. [Thread
(Chandra)]

badpix_glob

Name template for the optional ACIS bad pixel file in the input directory. This must match either zero
or one files. [Thread (Chandra)]

bgd_ann_sep

Separation between source circle and inner circle of background annulus (pixels). [Project]

bgd_ann_wid

Background annulus width (pixels). [Project]

binned_method

Fit method for binned data. [Project]

binned_stat

Fit statistic for binned data. [Project]

clean_spec

File group definitions for cleaning files before processing. [System, Thread]

common_model_defs

Model component definitions that are always put into script in order to simplify source model
definitions. For instance the default for common_model_defs includes:

xsphabs[gal]
gal.nh = %VALUE{gal_nh}%
freeze gal
#
pow[pow1]
pow1.gamma = 1.9
pow1.gamma.min = -1.5
pow1.gamma.max = 3.5

This definition of the gal model component will be included in every fit script so that a simple
powerlaw with Galactic absorption can be defined completely with:

source = gal * pow1

[Project]

environment

Define setup required for an analysis environment including setenv commands and running a shell
script. The analysis environments defined with this parameter are then called out for use via the
use_environment parameter which is typically defined at the thread level. An example
environment setting is as follows:

<environment HEAsoft>
 setenv HEADAS /soft/lheasoft/headas/i686-pc-linux
 shell csh
 script source $HEADAS/headas-init.csh
</environment>

The setenv parameter sets the given Unix shell environment variable to the supplied value. Multiple
setenv parameters may be supplied. To source an initialization script, define the shell (typically
sh, bash, or csh) required to run the script and then the actual initialization script command via the
script parameter. Only one script may be run per environment setting. [System]

evt2_glob

Name template for the required ACIS event file in the input directory. It can contain Unix file
wildcard characters ? and *, and can have multiple values separated by whitespace. This must match
exactly one file in the input directory. [Thread (Chandra)]

file_definition

This structure defines the actual file name for all file types used within yaxx. [System, Thread]

fit_plot

Formatting specifications for the spectral fit plots:

<fit_plot>
 width_inches = 2.25 # Width in inches (for latex)
 width_pixels = 250 # Width in pixels (for HTML)
 n_across = 3 # Number across on page
</fit_plot>

[Thread]

fit_rules

The rules which specify different models and/or fit binning based on the number of source counts are
given here. This table must have the three columns model_name , Fit file , and condition , in
that order:

#--
Rules defining which models to fit
#--
fit_rules <<END_FIT_RULES_TABLE
 # model_name Fit file condition
 # --------- ------------------- -------------
 pl fit_ungrouped counts <= 100
 pl_fix_abs fit_ungrouped counts <= 100
 pl fit_grouped counts > 100
 pl_fix_abs fit_grouped counts > 100
 pl_abs fit_grouped counts > 200
END_FIT_RULES_TABLE

model_name
Name of the spectral model to be used in fitting. Thhis corresponds to the names given in the
model definition parameter.

Fit file
Name of the Sherpa fit template file in the resources/<thread> directory within the yaxx
installation directory. This specifies the script used by Sherpa to do the spectral fitting and to
create the output files. Users are encouraged to inspect and customize these templates as needed.
It would be wise to give customized files a new name to avoid confusion with the yaxx
distribution files.

condition

Boolean condition which must be satisfied for the fitting rule to be applied. This allows different
models and grouping to be applied based on the source attributes. In the given example, a
spectrum with 50 counts would be fit unbinned with each of the models pl and pl_fix_abs
(which are a powerlaw and absorbed powerlaw with Gamma fixed, respectively). A spectrum
with 1000 counts would be fit by pl , pl_fix_abs , and pl_abs (absorbed powerlaw).

The condition can be more complex and include tests using any of the columns in the object list
file. For instance, one could have a condition

(counts > 200 and redshift < 1) or (counts > 500) or obsid == 3102

[Project]

formatting_rule

Define how yaxx will interpret and format variables and fit values for output. This parameter is a
sequential set of named structures following the format:

<formatting_rule RULE_NAME>
 FORMATTING_ATTRIBUTES
</formatting_rule>

Here RULE_NAME can include the Unix wildcard characters * and ?. This makes it easy to specify the
formatting for a class of fit model parameters. For instance, there are many absorption models that
have a parameter nH, so one need only make a rule for *.nH . If a particular model needs to be
different than the generic version, just add a new rule with the full model name, e.g. zwabs1.nh .
The rule name is not case sensitive.

The example below *.nh illustrates all the features of a formatting rule:

<formatting_rule *.nh>
 fmt %.3f # sprintf() style format specifier
 mult 1 # Multiply by this value before output
 unit_latex 10^{22} # Units in latex
 unit_html 10²² # Units in HTML
 label Absorbing Column # Label returned by %LABEL{}% macro
 report_lower %VALUE% # Use fit value if lower limit not found
 report_upper %INFINITY% # Use infinity if upper limit not found
 summary_lower %VALUE% # Use fit value if lower limit not found
 summary_upper 9999 # Use 9999 if upper limit not found
 default 0.0 # Default value if not supplied
</formatting_rule>

[System]

group_val

Value used for grouping spectra. Grouping is done within Sherpa as specified in the appropriate fit
template file ($YAXX/resources/fit_grouped by default). See fit_rules and ahelp
groupByCounts for additional information. Currently available Sherpa S-lang routines for
grouping are:

groupByCounts([dset,] numCounts)
groupBySNR([dset,] minSNR)
groupAdaptively([dset,] minCounts)
groupAdaptiveSNR([dset,] minSNR)

Use the existing fit_grouped template as an example for selecting different grouping options.
[Project]

html_report_index

Definition of columns in the HTML report index. This consists of an ordered series of column
definitions that specify the header and value for that column. [Thread]

input_dir

This controls the location of the input data files. For the Chandra analysis thread this points to the
directory containing the ACIS, PCAD (aspect solution), and source (detect) data files. With
input_dir=data/obs%VALUE{obsid}% the input data for obsid 956 would be expected in
./data/obs956/ . The input and output dirs can be the same. [Project]

log_file

The name of a directory (if ending in a "/") or file for logging the yaxx run results. If it is a directory,
the log file is automatically named using the date and time of the run. [Project]

log_time_format

Time format for log file entries. See the POSIX:strftime perl documentation or the strftime man page
for further details. [System]

max_energy

Maximum energy for fitting (eV). The derived quantity max_energy_kev can be used via
%VALUE{max_energy_kev}% within template files, but it cannot be set directly in the configuration
file. [Project]

min_counts

Minimum broad band counts for yaxx to process a source. This can be useful if processing sources
from a detect FITS file. [Project]

min_energy

Minimum energy for fitting (eV). The derived quantity min_energy_kev can be used via
%VALUE{min_energy_kev}% within template files, but it cannot be set directly in the configuration
file. [Project]

min_src_rad

Minimum source extraction radius (pixels) applied to automatic determination of the radius using the
Enclosed Counts Fraction tables. [Project]

mission

Specify the mission for the data. Currently this can be either ’Chandra’ or ’XMM’. The mission
parameter enables yaxx to load mission-specific perl code, and is distinct from the thread parameter
which only changes configuration files. [Project]

model

The models to be fit are given as Sherpa commands as seen in the example below. Each model must
have a unique name and be defined within the <model> ... </model> structure in the
configuration file. Of note is the usage of the %VALUE{gal_nh}% variable to specify the Galactic
column (in units of 10^20 / cm^2). This value is automatically determined by yaxx using colden unless
supplied in the object list file. The %VALUE{redshift}% will default to zero if not supplied.

#---
Power law with redshifted intrinsic absorption
#---
pl_abs <<END_MODEL
 source = xsphabs[gal] * xszwabs[abs] * pow[pow1]
 gal.nh = %VALUE{gal_nh}%
 abs.nh = 0.0
 abs.redshift = %VALUE{redshift}%
 abs.nh.min = 1e-4
 abs.nh.max = 500
 pow1.gamma.min = -1.5
 pow1.gamma.max = 3.5
 freeze gal
END_MODEL

[Project]

objlist

Name of the object list file [Project]

output_dir

Output data goes here, in directories named obs<‘‘ObsId >‘‘. [Project]

process_step

Define a step in the overall data processing flow for each source. The two most common usages are to
execute one or more shell commands or else to call an internal yaxx method (aka subroutine) to
perform some processing (typically the more complex tasks like doing the spectral fitting). The
sequential list of these process steps is the fundamental component of a processing thread (e.g.
Chandra or XMM).

One of the key concepts of the processing is the file dependencies. In order to avoid unnecessarily
repeating processing steps, many yaxx steps include specifications for the target and depend files. The
target files are those files that are created via the process step (i.e. the output), and the depend files are
those files that are used in the creation (i.e. the input). If any of the target files do not exist the the
process step will be run. If all target files exist but some are older than the depend files, then the step
will be run. If any of the depend files are missing then the process step automatically fails without
running the method or commands.

This is a complex parameter with a number of options that are described below. Some options are
specific to a particular method call, for instance the mkdir option is meaningful only for a call to the
yaxx method make_dirs() .

name
The name of the process step. This is required for every process step and must be unique.

method
The name of a yaxx method (subroutine) to call. The other process_step options are passed to the
method. There can be only one method option in a process_step.

command
A shell command to be executed. The exit value of the command will be tested to determine
successful execution of the step. Following the usual Unix convention a return value of 0 is
considered successful. Multiple command options can be specified within a single process_step,
and they will be executed in the order given.

set_var var
Used in conjuction with command to create and/or set a variable var associated with the source.
The variable is set to the output of the command(s). Note that the special yaxx columns such as
obsid, RA, Dec, X, Y in the object list cannot be set in this way.

dir
Run the process step within the specified directory.

always_run
Always run the process step, even if a prior processing step has failed. Normally once any step
fails the processing is cut short. However, certain key steps that have always_run=1 will run
in any case. This allows for proper clean-up and generation of a report even for failed processing.

depend_file
Specify an input file on which processing depends. If any depend file is newer than any target file
then the process step will be done. More than one depend_file can be supplied.

depend_glob
Similar to depend_file but the expression is interpreted as a Unix file expression with
wildcards (e.g. acis_*evt2.fits*). More than one depend_glob can be supplied.

target_file
Specify an output file of the processing step. More than one target_file can be supplied.

delete_file
Delete the specified file just prior to the actual method call or shell commands. This is not done if
the processing step is not to be done in the case that the target dependencies are already met or
other criteria like run_if_defined are not satisfied. More than one delete_file can be
supplied and the file name can contain Unix wildcard characters.

run_if_defined
Run the process step if the named variable is defined. More than one run_if_defined can be
supplied.

run_if_true
Run the process step if the value is true (non-zero). More than one run_if_true can be
supplied.

run_if_file
Run the process step if the named file exists and is readable. More than one run_if_file can
be supplied and the file name can contain Unix wildcard characters.

[Thread]

projection

Do projection in Sherpa to calculate the parameter confidence intervals. This is more robust (in terms
of accuracy) but slower than uncertainty. [Project]

psf_energy

For the Chandra thread, determine extraction radius for at energy (keV). [Project]

psf_fraction

For the Chandra thread, if no extraction radius is explicitly supplied, yaxx automatically determines
the radius so that it includes this specified fraction of the PSF at the psf_energy . This makes use of
the HRMA circular Enclosed Counts Fraction tables supplied by the CXC Calibration group. [Project]

source_image

This structure defines parameters controlling the generation of the 2-d color image of the source
events and extraction regions. The parameters and default values are given below:

field_of_view = 100 # Image FOV (ACIS pixels)
binning = 1 # Image binning
size_inches = 3.0 # Plot window physical size (inches)
size_pixels = 240 # Plot window physical size (pixels)
label = %VALUE{object}% # Label to include in image
label_x = 0.5 # X position of label (From 0 to 1)
label_y = 0.92 # Y position of label (lower)
color_table = heat # Color table name
invert = 1 # Invert color table
charsize = 2.0 # Character size
justification = 0.5 # Text justification (0=left,1=right)
event_filter = [energy=%VALUE{min_energy}%:%VALUE{max_energy}%]
 # CIAO filter on evt file for image

[Thread]

spec_chan_type

Extract spectrum as a ’pi’ or ’pha’ channel type. [Project]

src2_glob

Name template for the optional wavdetect or celldetect FITS source file in the input directory. This
must match either zero or one files. [Thread (Chandra)]

src_column_name

Column in an auxilliary source FITS file that identifies the source number. For CIAO celldetect or
wavdetect output files, this is the component column. [Thread]

src_net_cts_name

Column in an auxilliary source FITS file that gives the net counts. For CIAO celldetect or wavdetect
output files, this is the net_counts column. [Thread]

summary_header_key_col

Define the set of keywords that are copied from the MDL file header into the summary FITS file
created for a fit model. The write_MDL_header_keys parameter defines the commands to insert a
number of useful FITS header keywords into the fit output MDL file, and summary_header_key_col
specifies which of those go into the fit summary file created by running yaxx -summary
<model_name> . [System]

thread

Sets the analysis thread as discussed in the Configuration file hierarchy section. [Project]

timeout

Calls to external tools such as psextract or Sherpa will time out if they do not complete within the
specified number of seconds. [System]

unbinned_method

Fit method for unbinned data. [Project]

unbinned_stat

Fit statistic for unbinned data. [Project]

uncertainty

Do uncertainty in Sherpa. If results for both projection and uncertainty are available, yaxx will use
projection. [Project]

use_environment

Use the specified enviroment as defined by the corresponding environment parameter. [Thread]

use_psextract

Use psextract instead of specextract. Future releases of yaxx will allow the choice of using either
specextract or psextract to perform the spectral extraction. At this time only psextract is supported and
this parameter is ignored. [Thread (Chandra)]

verbose_master_log

Verbosity level for output to master log file. The levels are:

0: Silent
1: Program and obsid level info
2: Process step summaries for each obsid
3: Top level outputs for each process step
4: Detailed outputs for each process step
5: Debug outputs

[Project]

verbose_source_log

Verbosity level for output to individual source log file, as defined in verbose_master_log. [Project]

verbose_stdout

Verbosity level for output to stdout (the screen), as defined in verbose_master_log. [Project]

write_MDL_header_keys

Specify the S-lang commands to insert a number of useful FITS header keywords into the output MDL
file within Sherpa after fitting is complete. This is a key component where yaxx takes advantage of the
S-lang environment to provide significant flexibility for customization.

For example, imagine you would like to record not only the model flux within the fit energy bounds
(which is done by default), but you would also like the "de-absorbed" flux in which selected absorbing
model components have been removed. This would be accomplished as follows.

First, in each source model definition (model) set a variable defining the de-absorbed model, for
instance:

source = gal * abs * (pow1 + gauss1d) # Standard source definition
deabsorbed_source = "pow1 + gauss1d" # "De-absorbed" source

Note that this is defining a S-lang string variable that must conform to the Sherpa model syntax. The
actual variable name (deabsorbed_source in this case) is arbitrary. Each yaxx model definition
requires its own definition of the deabsorbed source string.

Second, in the write_MDL_header_keys definition add a line to calculate the de-absorbed flux:

flux_deabs=get_eflux(1, [%VALUE{min_energy_kev}%, %VALUE{max_energy_kev}%], deabsorbed_source)

Then add a line to insert a new MDL file header keyword:

fits_update_key (fp, "FLUXDABS", flux_deabs.value, "De-absorbed flux (" + flux_deabs.units + ")")

Finally, add a summary_header_key_col entry so that the value gets put into the summary file:

summary_header_key_col FLUXDABS

[System]

	Yaxx Reference Manual
	1€€€Overview
	2€€€Analysis Root Directory
	3€€€Input Data
	3.1€€€Chandra Data
	3.2€€€XMM Data

	4€€€Object List File
	4.1€€€Examples
	No source number
	Using detect file with source number
	Using detect file with no source number
	Different delimiter
	Minimal object list file

	4.2€€€Yaxx columns
	4.3€€€Non-yaxx columns
	4.4€€€Object List File Format

	5€€€Configuration Files
	5.1€€€Configuration file hierarchy
	System
	Analysis Thread
	Project
	ObsId
	Source

	5.2€€€Configuration file format
	Configuration examples and explanation

	6€€€Run yaxx
	6.1€€€Reprocessing
	6.2€€€Spectral fitting with Sherpa
	Background subtraction and fitting

	6.3€€€Command line options
	-config <file>
	-obsid <ObsId> [<ObsId2> ..]
	-src <src> [<src2> ..]
	-preclean <file_group> [<file_group> ..]
	-summary <model_name>

	6.4€€€Pausing yaxx

	7€€€Yaxx Output Data Files
	7.1€€€Further analysis in Sherpa
	7.2€€€HTML and postscript summary reports

	8€€€Processing results FITS table
	9€€€Citation
	10€€€Related software
	10.1€€€ACIS Extract
	10.2€€€Xassist

	11€€€Copyright and Licence
	12€€€Acknowledgments
	13€€€Appendix
	13.1€€€Configuration file macro substitutions
	13.2€€€Configuration parameters
	allow_failed_fit
	asol_glob
	badpix_glob
	bgd_ann_sep
	bgd_ann_wid
	binned_method
	binned_stat
	clean_spec
	common_model_defs
	environment
	evt2_glob
	file_definition
	fit_plot
	fit_rules
	formatting_rule
	group_val
	html_report_index
	input_dir
	log_file
	log_time_format
	max_energy
	min_counts
	min_energy
	min_src_rad
	mission
	model
	objlist
	output_dir
	process_step
	projection
	psf_energy
	psf_fraction
	source_image
	spec_chan_type
	src2_glob
	src_column_name
	src_net_cts_name
	summary_header_key_col
	thread
	timeout
	unbinned_method
	unbinned_stat
	uncertainty
	use_environment
	use_psextract
	verbose_master_log
	verbose_source_log
	verbose_stdout
	write_MDL_header_keys

