
Yaxx Reference Manual
Overview
Citation
CIAO environment
Analysis Root Directory
Chandra Input Data
Object List File

Examples
Yaxx columns
Non-yaxx columns
Object List File Format

Configuration Files
Overview
Configuration file format
Project parameters
System parameters

Run yaxx
Reprocessing
Spectral fitting with Sherpa

Key parameters
Background subtraction and fitting

Command line options
Pausing yaxx

Yaxx Output Data Files
Further analysis in Sherpa
HTML and postscript summary reports

Processing results FITS table
Other Extractors

ACIS Extract
Xassist

Copyright and Licence
Acknowledgments

Yaxx Reference Manual
This document describes the yaxx tool. It includes discussion of usage, configuration parameters, and
analysis results. For a quick start guide including a tutorial example see the Quick Start guide. For
installation instructions see the Install guide. Throughout this document the variable $YAXX is assumed
to be the directory in which yaxx was installed.

Overview
Yaxx is a Perl script that facilitates batch spectral processing of Chandra data using CIAO tools, Sherpa,
and Perl open source software. It includes automated spectral extraction, fitting, and report generation.
The primary emphasis is on having a simple tool that can be run without requiring an extensive learning
curve. The simplest task of fitting a default model to one source in a field requires only three steps: copy
the Chandra data into an appropriate directory, create a two-line file specifying the ObsId and source
position, and run yaxx. However, for those with the motivation, yaxx is highly configurable and can be
customized to support complex analysis. In particular yaxx uses template files and takes full advantage of
the unique Sherpa / S-lang environment to make much of the processing user configurable.

The basic analysis flow using yaxx is:

Enter the CIAO environment
Create a yaxx analysis root directory
Assemble input Chandra data in directories organized by ObsId
Create an object list file defining sources to be processed
Adjust configuration files, e.g.

Define spectral fit models
Change data grouping specifications
Change fit method and statistic

Run yaxx
Examine analysis output data files
Generate summary fit results data table

This manual is organized by describing each of the components in the analysis flow given above. Much of
the detailed functionality of yaxx is specified by the configuration parameters. To avoid getting bogged
down, throughout the manual we refer to relevant parameters in general terms, while the details are given
in the alphabetically organized Configuration Parameters section.

Throughout this document the variable $YAXX is assumed to be the directory in which yaxx was
installed. For instance, if you install yaxx in your home directory as shown in the installation guide, you
would do (for csh or tcsh):

 set YAXX=~/yaxx

A quick start guide is available (doc/quick_start) which will guide you through a simple example and
demonstrate most of the key features needed to run yaxx.

Citation
If you make use of yaxx in analysis for published results, it is requested that you include an appropriate
citation. Shown below is an example if you are using the the natbib bibliographic package:

 \bibitem[Aldcroft (2006)]{Aldcroft06} Aldcroft, T.L. 2006, Yaxx: Yet Another
 X-ray Xtractor

At the point of citation please include a text footnote with the yaxx home page URL:

 http://cxc-www.harvard.edu/contrib/yaxx

CIAO environment
Yaxx must be run from within the CIAO environment. Source the appropriate initialization script (as
instructed in the CIAO documentation) to enter the CIAO analysis environment.

Note that if the FTOOLS package is used within the same session as CIAO then the FTOOLS
initialization must be done before CIAO initialization. Search for ‘‘Other Software Packages’’ in the
CIAO documentation for further details.

Analysis Root Directory
Yaxx is run from an analysis root directory that should be distinct from the $YAXX source installation
directory. The analysis directory contains the project configuration parameters, the object list file, and the
output analysis products in subdirectories by ObsId. These are each described in subsequent sections.

Chandra Input Data
The Chandra input data for running yaxx are:

ACIS event file (acis?*_evt2.fits*) [required]
Aspect solution file or files (pcad?*_asol1.fits*) [required]
Source detect file (acis?*_src2.fits*) [optional]
ACIS bad pixel file (acis?*_bpix1.fits*) [optional]

The location of these files is defined by the input_dir configuration parameter. By default yaxx looks
in the analysis directory in sub-directories named obs<ObsId>. In general input_dir can specify either
an absolute or relative path name, and includes specification of the ObsId formatting (for instance whether
the ObsIds are 5 digits with leading zeroes).

The input file names which yaxx searches for are given by the four ‘‘glob’’ parameters evt2_glob ,
asol_glob , src2_glob , and badpix_glob . Each of these specify a file match template using the
Unix wildcard characters ’*’ and ’?’. The default values listed above match the file naming convention for
data downloaded from the Chandra archive and allow for gzipped files.

When starting to use yaxx one should decide whether to store the input data in a separate repository or to
have the input data co-located with the analysis results. The latter is selected by default. This is a matter of
preference, but if you foresee defining different samples or different projects based on a common set of
data then it makes sense to use a distinct data repository.

http://cxc-www.harvard.edu/contrib/yaxx

Yaxx can handle input data files that are gzipped, but for processing efficiency (to avoid repeatedly
unzipping a large event file) it always works with an unzipped version on disk. Thus if the input file is
gzipped yaxx will generate a local unzipped version. In general the best practice is to unzip the input data
files in which case yaxx simply creates a link to the file.

One caveat when input data are stored in the same directories as the output results is that yaxx will create
files named acis_evt2.fits, pcad_asol1.fits, acis_src2.fits and acis_bpix1.fits. It is important that the input
data files and file template parameters do NOT match those names. If the default settings are used there
will be no conflict.

Note that the requirement of supplying aspect solution files is expected to be removed as support for the
specextract tool is added to yaxx.

Object List File
The list of ObsIds and sources, along with other source-specific information such as position and redshift,
is specified as tabular data in the object list file. The name of the file is given by the objlist parameter.
The format of this file can be FITS, RDB, HTML, or ASCII (with several common column delimiters
supported). Yaxx will automatically detect the table format and read the table. Details on the table format
are given in the Object List File Format subsection.

As an example, an ASCII table could consist of the following lines:

 obsid src redshift X Y object
 3102 1 0.32 4167 4085 Q1250+568
 877 1 0.22 4200 4102.1 ’Source 82’

This is a space-delimited table and indicates that the first source is named Q1250+568 with physical sky
coordinates (4167,4085). Any fits that rely on a redshift will use 0.32. The second source is ‘‘Source 82’’.
Note the quotes for this space-delimited file. In an RDB (tab-separated) file the quotes would be
unnecessary.

The only column in the object list file that is always required is the obsid . However, yaxx must be told
where the sources are by one of three methods:

Specify the physical sky coordinates in columns X and Y
Specify the RA and Dec in columns ra and dec
Supply a wavdetect or celldetect FITS file (e.g. acis*src2.fits from the Chandra primary
products), and do NOT include any of the columns X, Y, ra, or dec. In this case you typically
supply a src number to indicate which source the file to process (see examples below).

Examples

No source number
The src column is not required. In this case the source numbers are automatically incremented from
1 for each obsid:

 obsid redshift X Y object
 3102 0.32 4167.4 4085.2 Q1250+568-A
 3102 0.32 4706.4 3916.7 Q1250+568-B
 877 0.22 4378.5 3892.4 ’Source 82’

Using detect file with source number

 obsid src redshift object
 3102 2 0.32 Q1250+568-B
 877 3 0.22 ’Source 82’

The src field given here corresponds to the component column in CIAO wavdetect or celldetect
files.

Using detect file with no source number
All sources in the detect FITS file which have net_counts >= min_counts (yaxx parameter)
will be processed:

 obsid redshift object
 3102 0.32 Q1250+568
 877 0.22 ’Source 82’

Different delimiter
Here an ASCII data file uses the ’|’ character to mark the columns. In this case the extraction radius
(pixels) has been explicitly specified:

 obsid | redshift | X | Y | object | rad
 3102 | 0.32 | 4167 | 4085 | Q1250+568-A | 9
 3102 | 0.32 | 4706 | 3916 | Q1250+568-B | 14
 877 | 0.22 | 4378 | 3892 | ’Source 82’ | 12.5

Minimal object list file
The minimal object list file consists of just the obsid and requires that a detect FITS file be
available:

 obsid
 3102

This will process every source in the detect files for the specified list of ObsIds. A more typically
useful example is to include the src field as well to pick out the desired sources.

Yaxx columns

The column names below have special meaning in yaxx and are directly used in processing. The names
are case-sensitive.

obsid
Chandra Observation ID

src
Yaxx source identifier which corresponds to the number in the source directory name. This must be a
positive integer. If not supplied then numbering within each ObsId starts at 1 and increments.

component
Synonym for src , which is useful if using a detect file as the object list. A detect file could be
produced by running wavdetect or celldetect , or be a Chandra source file (acis*src2.fits)
from standard processing.

X, Y
Physical sky coordinates (pixels) of the object. If not supplied, yaxx will use (ra, dec) or the
detect file to determine (X, Y).

ra, dec
Celestial sky coordinates (degrees J2000) of the object. If not supplied, yaxx will use (X ,Y) or the
detect file to determine (ra, dec).

rad
Circular source extraction radius (pixels). If not supplied and no source region file is present, yaxx
will determine an extraction radius for each object based on the off-axis angle and the
psf_fraction and psf_energy parameters.

Of the columns listed above, only obsid is always required. If a column is supplied, then defined values
must be present for all sources (i.e. one cannot leave a numerical column value blank for any sources).

Non-yaxx columns

All column data in the object list file is read in and associated with each object. Within the configuration
files those object data can be accessed with the syntax %VALUE{<col_name>}% . The most common
use for this is to supply fit model parameters specific to each object such as redshift, Galactic column or
abundance. For instance, the default absorbed power-law model in yaxx includes the sherpa commands:

 source = xsphabs[gal] * xszwabs[abs] * pow[pow1]
 gal.nh = %VALUE{gal_nh}%
 abs.redshift = %VALUE{redshift}%

This has the effect of setting the Galactic neutral hydrogen column and absorber redshift to the column
values of gal_nh and redshift in the object list file. Note that as a special case, if gal_nh is not
given then yaxx will automatically determine an appropriate value for an extragalactic source at the given
object sky position.

Object List File Format

FITS
This must be a FITS compliant table file (ASCII or binary). The first table in the file will be used.
The most common use of a FITS object list file would be celldetect or wavdetect source output file.

ASCII
This must be a plain text file where the first non-comment line specifies the column names. Any line
with ’#’ as the first character is considered to be a comment. For an ASCII table yaxx attempts to
guess the column delimiter, trying (in order) Comma, Ampersand ‘‘&’’, Vertical bar ‘‘|’’, Tab, and
Whitespace. The first one which gives a sensible table is used. A ‘‘sensible table’’ means that there
are at least two columns and every row has the same number of columns. Within the table one can
use single or double quotes to have an entry that includes the column delimiter.

RDB
This must be a standard RDB format file, which has a column name row, a column format row, and
tab separated values. Any line with ’#’ as the first character is considered to be a comment.

HTML
This must be standard HTML (whatever that might be) with a table that can be parsed by the
HTML::TableParser routine. The first table in the file will be used.

Configuration Files

Overview

The operation of yaxx is controlled by configuration files that define variables and data structures used by
yaxx. In order to separate system parameters from those typically modified by users (while still
maintaining full configurability) yaxx reads a heirarchy of configuration files. In order of increasing
precedence these files are System , Project , ObsId , Source . The System file and Project files
are both required, while the ObsId and Source files are optional. Each configuration file must be
named yaxx.cfg, with the file location determining its scope:

System
System-wide configuration data located in the yaxx installation directory $YAXX. All yaxx runs
read this file, which for basic usage should not need modification. This file includes the default report
layout, file naming specifications, the basic sherpa fitting script, and a baseline set of fit models.

Project
Configuration data for each yaxx analysis ‘‘project’’. This file is located in the analysis root directory
and typically includes basic run parameters, custom fit models and rules, and report formatting rules.
Any item in the system-wide yaxx.cfg file can also be overridden here. Normally one would start a
project by copying $YAXX/User/yaxx.cfg into the analysis directory and then modifying that file as
needed.

ObsId
Configuration data specific to a particular obsid, located in <output_dir>/obs<obsid>/yaxx.cfg.
This allows specification of different run parameters for a particular ObsId.

Source
Configuration data specific to a particular source, located in
<output_dir>/obs<obsid>/src<srcid>/yaxx.cfg >. One reason to use this is to change the fit
models for a particular source in the sample, for instance to add an iron line or fit a thermal model.

One could also create a source-specific fit model with particular starting fit parameters that help with
convergence. In large batch-fitting applications there are typically some oddballs that benefit from fine
tuning.

Configuration file format

These configuration files are specified in a simple format that allows for specification of both simple
parameter values as well as complex data structures. Users should have no difficulty modifying the
self-documented files by example, but for details refer to the Config::General documentation
contained in the yaxx installation:

 perldoc $YAXX/yaxx-perl/Config/General.pm

One issue to note is the use of the so-called here-doc notation to specify a multiline string. For instance a
model specification could be given by the following, which sets the model parameter pl to the multiline
string enclosed by the matching END_MODEL tags. The matching tag name END_MODEL is arbitrary
as long as it does not appear in the parameter string.

 pl <<END_MODEL
 source = pow[pow1] * xswabs[gal]
 gal.nh = %VALUE{gal_nh}%
 pow1.gamma.min = -1.5
 pow1.gamma.max = 3.5
 END_MODEL

Project parameters

Here we describe in detail each of the parameters that are found in the Project level configuration file
by default. These are parameters that will typically be adjusted by the user for an analysis project.

input_dir
This controls the location of the input ACIS, PCAD (aspect solution), and source (detect) data files.
The string is used as input to a C-style sprintf command, with obsid as the parameter, to generate the
actual directory. See the sprintf man page for details. For instance, with
input_dir=my_data/obs%05d/inputs , the input data for obsid 956 would be expected in
./my_data/obs00956/inputs/. With input_dir=obs%d , the files would be in ./obs956/. The input
and output dirs can be the same.

output_dir
Output data goes here, in directories named obs<ObsId>.

objlist
Name of the object list file

log_file
The name of a directory (if ending in a ‘‘/’’) or file for logging the yaxx run results. If it is a
directory, the log file is automatically named using the date and time of the run.

loud
Run yaxx loudly if set to 1. This should typically be enabled.

projection
Do projection in Sherpa to calculate the parameter confidence intervals. This is more robust (in terms
of accuracy) but slower than uncertainty.

uncertainty
Do uncertainty in Sherpa. If results for both projection and uncertainty are available, yaxx will use
projection.

unbinned_method
Sherpa fit method for unbinned data. See ahelp method for options.

unbinned_stat
Sherpa fit statistic for unbinned data. See ahelp statistic for options.

binned_method
Sherpa fit method for binned data. See ahelp method for options.

binned_stat
Sherpa fit statistic for binned data. See ahelp statistic for options.

min_energy
Minimum energy for fitting (eV). The derived quantity min_energy_kev can be used via
%VALUE{min_energy_kev}% within template files, but it cannot be set directly in the configuration
file.

max_energy
Maximum energy for fitting (eV). The derived quantity max_energy_kev can be used via
%VALUE{max_energy_kev}% within template files, but it cannot be set directly in the
configuration file.

min_src_rad
Minimum source extraction radius (pixels) applied to automatic determination of the radius using the
Enclosed Counts Fraction tables.

bgd_ann_sep
Separation between source circle and inner circle of background annulus (pixels)

bgd_ann_wid
Background annulus width (pixels)

min_counts
Minimum broad band counts for yaxx to process a source. This can be useful if processing sources
from a detect FITS file.

group_val
Value used for grouping spectra. Grouping is done within Sherpa as specified in the appropriate fit
template file ($YAXX/resources/fit_grouped by default). See fit_rules and ahelp
groupByCounts for additional information. Currently available Sherpa S-lang routines for
grouping are:

 groupByCounts([dset,] numCounts)
 groupBySNR([dset,] minSNR)
 groupAdaptively([dset,] minCounts)
 groupAdaptiveSNR([dset,] minSNR)

Use the existing fit_grouped template as an example for selecting different grouping options.

spec_chan_type
Extract spectrum as a ’pi’ or ’pha’ channel type.

psf_fraction
If no extraction radius is explicitly supplied, yaxx automatically determines the radius so that it
includes this specified fraction of the PSF at the psf_energy . This makes use of the HRMA
circular Enclosed Counts Fraction tables supplied by the CXC Calibration group.

psf_energy
Determine extraction radius for at energy (keV)

fit_rules
The rules which specify different models and/or fit binning based on the number of source counts are
given here. This table must have the three columns model_name , Fit file , and condition , in
that order.

 #--
 # Rules defining which models to fit
 #--
 fit_rules <<END_FIT_RULES_TABLE
 # model_name Fit file condition
 # --------- ------------------- -------------
 pl fit_ungrouped counts <= 100
 pl_fix_abs fit_ungrouped counts <= 100
 pl fit_grouped counts > 100
 pl_fix_abs fit_grouped counts > 100
 pl_abs fit_grouped counts > 200
 END_FIT_RULES_TABLE

model_name
Name of the model as given in the model definition parameter

Fit file
Name of the Sherpa fit template file in the resources directory within the yaxx installation
directory. This specifies the script used by Sherpa to do the spectral fitting and to create the
output files. Users are encouraged to inspect and customize these templates as needed. It would
be wise to give customized files a new name to avoid confusion with the yaxx distribution files.

condition
Boolean condition which must be satisfied for the fitting rule to be applied. This allows different
models and grouping to be applied based on the source attributes. In the given example, a spectrum with
50 counts would be fit unbinned with each of the models pl and pl_fix_abs (which are a
powerlaw and absorbed powerlaw with Gamma fixed, respectively). A spectrum with 1000 counts would
be fit by pl , pl_fix_abs , and pl_abs (absorbed powerlaw).

The condition can be more complex and include tests using any of the columns in the object list
file. For instance, one could have a condition

 (counts > 200 and redshift < 1) or (counts > 500) or obsid == 3102

model
The models to be fit are given as Sherpa commands as seen in the example below. Each model must
have a unique name and be defined within the <model> ... </model> structure in the
configuration file. Of note is the usage of the %VALUE{gal_nh}% variable to specify the Galactic
column (in units of 10^20 / cm^2). This value is automatically determined by yaxx using colden
unless supplied in the object list file. The %VALUE{redshift}% will default to zero if not
supplied.

 #---
 # Power law with redshifted intrinsic absorption
 #---
 pl_abs <<END_MODEL
 source = xsphabs[gal] * xszwabs[abs] * pow[pow1]
 gal.nh = %VALUE{gal_nh}%
 abs.nh = 0.0
 abs.redshift = %VALUE{redshift}%
 abs.nh.min = 1e-4
 abs.nh.max = 500
 pow1.gamma.min = -1.5
 pow1.gamma.max = 3.5
 freeze gal
 END_MODEL

common_model_defs
Model component definitions that are always put into script in order to simplify source model
definitions. For instance the default for common_model_defs includes:

 xsphabs[gal]
 gal.nh = %VALUE{gal_nh}%
 freeze gal
 #
 pow[pow1]
 pow1.gamma = 1.9
 pow1.gamma.min = -1.5
 pow1.gamma.max = 3.5

This definition of the gal model component will be included in every fit script so that a simple
powerlaw with Galactic absorption can be defined completely with:

 source = gal * pow1

System parameters

Here we describe in detail each of the parameters that are in the System level configuration file. For
basic usage of yaxx these parameters will not need to be adjusted. However, those doing more
sophisticated analyses or desiring to customize the fit script or output format will need to adjust these
parameters. This can be done on either the System level file or each Project level file. If modifying
the System file it is recommended that the new specifications simply be added on the end of the file,
where they will override the supplied default values. This strategy will make it easier to retain
customizations when new versions of yaxx are released.

log_time_format
Time format for log file entries. See the POSIX:strftime documentation for further details.

timeout
Calls to external tools such as psextract or Sherpa will time out if they do not complete within the
specified number of seconds.

allow_failed_fit
If the Sherpa fit for one model fails, continue with others. This is not generally recommended
because (if enabled) yaxx will report SUCCESS for source processing even in cases where a one or
more fits failed.

fit_plot_size
Size of the spectral fit plot in pixels

use_psextract
Use psextract instead of specextract. Future releases of yaxx will allow the choice of using either
specextract or psextract to perform the spectral extraction. At this time only psextract is supported
and this parameter must be enabled.

src_column_name
Column name in a detect file that identifies the source number. For CIAO celldetect or wavdetect
output files, this is the component column.

lock
If enabled, yaxx creates a lock file in the source directory for each source while processing. This
locks out any other instance of yaxx from processing that source. Locking is needed for running
multiple instances of yaxx (taking advantage of multiple processing) on a single project.

evt2_glob
Name template for the required ACIS event file in the input directory. It can contain Unix file
wildcard characters ? and *, and can have multiple values separated by whitespace. This must match
exactly one file in the input directory.

asol_glob
Name template for the required PCAD aspect solution file(s) in the input directory. This can
match multiple files in the input directory, in which case the files will be concatenated in order.

src2_glob
Name template for the optional wavdetect or celldetect FITS source file in the input directory. This
must match either zero or one files.

badpix_glob
Name template for the optional ACIS bad pixel file in the input directory. This must match either
zero or one files.

report_index_col
List of columns that are included in the yaxx HTML report summary index.

source_image
This structure defines parameters controlling the generation of the 2-d color image of the source
events and extraction regions. The parameters and default values are given below.

 field_of_view = 100 # Image FOV (ACIS pixels)
 size_inches = 3.0 # Plot window physical size (inches)
 size_pixels = 240 # Plot window physical size (pixels)
 label = %VALUE{object}% # Label to include in image
 label_x = 0.5 # X position of label (From 0 to 1)
 label_y = 0.92 # Y position of label (lower)
 color_table = heat # Color table name
 invert = 1 # Invert color table
 charsize = 2.0 # Character size
 justification = 0.5 # Text justification (0=left,1=right)

formatting_rule
Define how yaxx will interpret and format variables and fit values for output. This parameter is a
sequential set of named structures following the format:

 <formatting_rule RULE_NAME>
 FORMATTING_ATTRIBUTES
 </formatting_rule>

Here RULE_NAME can include the Unix wildcard characters * and ?. This makes it easy to specify
the formatting for a class of fit model parameters. For instance, there are many absorption models
that have a parameter nH, so one need only make a rule for *.nH . If a particular model needs to be
different than the generic version, just add a new rule with the full model name, e.g. zwabs1.nh .
The rule name is not case sensitive.

The example below *.nh illustrates all the features of a formatting rule:

 <formatting_rule *.nh>
 fmt %.3f # sprintf() style format specifier
 mult 1 # Multiply by this value before output
 unit_latex 10^{22} # Units in latex
 unit_html 10²² # Units in HTML
 report_lower %VALUE% # Use fit value if lower limit not found
 report_upper %INFINITY% # Use infinity if upper limit not found
 summary_lower %VALUE% # Use fit value if lower limit not found
 summary_upper 9999 # Use 9999 if upper limit not found
 default 0.0 # Default value if not supplied
 </formatting_rule>

summary_header_key_col
Define the set of keywords that are copied from the MDL file header into the summary FITS file. The
write_MDL_header_keys parameter defines the commands to insert a number of useful FITS
header keywords into the fit output MDL file, and summary_header_key_col specifies which
of those go into the fit summary file created by running yaxx -summary <model_name> .

write_MDL_header_keys
Specify the S-lang commands to insert a number of useful FITS header keywords into the output
MDL file within Sherpa after fitting is complete. This is a key component where yaxx takes
advantage of the S-lang environment to provide significant flexibility for customization.

For example, imagine you would like to record not only the model flux within the fit energy bounds
(which is done by default), but you would also like the ‘‘de-absorbed’’ flux in which selected
absorbing model components have been removed. This would be accomplished as follows:

First, in each source model definition (model) set a variable defining the de-absorbed model, for
instance:

 source = gal * abs * (pow1 + gauss1d) # Standard source definition
 deabsorbed_source = "pow1 + gauss1d" # "De-absorbed" source

Note that this is defining a S-lang string variable that must conform to the Sherpa model syntax. The
actual variable name (deabsorbed_source in this case) is arbitrary. Each yaxx model definition
requires its own definition of the deabsorbed source string.

Second, in the write_MDL_header_keys definition add a line to calculate the de-absorbed flux:

 flux_deabs=get_eflux(1, [%VALUE{min_energy_kev}%, %VALUE{max_energy_kev}%], deabsorbed_source)

Then add a line to insert a new MDL file header keyword:

 fits_update_key (fp, "FLUXDABS", flux_deabs.value, "De-absorbed flux (" + flux_deabs.units + ")")

Finally, add a summary_header_key_col entry so that the value gets put into the summary file:

 summary_header_key_col FLUXDABS

file_definition
This structure defines the actual file name for all file types used within yaxx.

Run yaxx
Yaxx is run from the analysis root directory. For each source in each ObsId the following processing steps
are performed:

Make output directories if needed
Set lock for source
Start a log file
Copy or link input data to analysis output directory
Make source and background extraction region files
Extract spectrum (PI or PHA file) from event data using psextract
Make image of source event data with PGPLOT
Fit specified models to spectral data using sherpa
Make report summary pages in HTML and LaTeX/postscript
Release lock for source

A processing run is successful if yaxx completes all necessary steps and and makes the final report for
each source in the specified object list file. Underlying this definition is the idea of file dependencies,
which is a key concept in the yaxx processing. Each step is run only if the output files for that step are
non-existent or are older than the input files. This is similar to the way in which a software package is
compiled based on source file dependencies.

Reprocessing

The practical importance of the file dependence concept lies in processing moderate to large samples of
sources. It is inevitable that all or part of the sample will need to be reprocessed (probably many times) in
the course of doing a serious analysis and writing a paper. In the initial processing there are often issues
with one or more sources requiring some fine tuning. After the first look one often sees that fit parameters
need to be adjusted. As time passes the CALDB may be updated or after the paper is written the referee
may have suggestions about the data analysis.

Yaxx was specifically designed to facilitate reprocessing by examining file dependencies. Instead of
manually tracking which sources need to be processed, the normal method is to run yaxx on the entire
sample. Those with changed input files will be processed while those with no changes will be left
untouched.

A caveat to this dependence concept is that updates to the configuration parameters are not tracked (but
future versions of yaxx should include this functionality). As a consequence, accounting for parameter
updates requires that a user manually force the appropriate reprocessing. For example, if a fit model were
updated then one would tell yaxx to force processing of the fit by cleaning all the output products of the fit
step before processing:

 yaxx -preclean fit

If other ealier dependencies were also unmet the appropriate processing steps would be run as well. The
available options are listed in the -preclean command line option description.

Spectral fitting with Sherpa

Key parameters

The spectral fitting in Sherpa depends directly on the parameters listed below. Users should read the
documentation for each parameter and understand how they affect the final fit results.

projection
uncertainty
unbinned_method
unbinned_stat
binned_method
binned_stat
fit_rules
model

Background subtraction and fitting

The default Sherpa fitting commands depend on whether the spectra are to be fitted grouped or
ungrouped.

If ungrouped, the standard method is to define a Sherpa background model and fit to the extracted
background PI or PHA spectrum. This fitted background model is then frozen for subsequent fitting of the
extracted source region (which contains source + background). The background model that is fit is simply
a normalization factor times an empirically derived 8th order polynomial with 6 added gaussians. The
coefficients of the polynomial and gaussians are frozen and have been set based on fitting (by the yaxx
author) of ACIS back-illuminated (S3) or front-illuminated background data (I2,I3,S2) background
datasets from the year 2000. These background models have been provided for the convenience of users,
but we no guarantees are made of their correctness or applicability to any particular analysis. Users are
strongly encouraged to investigate the background fitting and provide feedback to the yaxx author if
improvements are warranted.

If the spectrum is grouped, the standard method is to use the subtract command to subtract the
extracted background spectrum from the source spectrum before fitting. This works reasonably well for
moderate to high counts spectra and aids in the visual interpretation of spectral plots. However, there are
good arguments against doing background subtraction, and users should explore the literature and decide
what makes sense for their analysis. If background fitting is preferred, use the example of the ungrouped
commands to appropriately modify the grouped commands template.

Command line options

The available command line options when running yaxx are:

-obsid <ObsId> [<ObsId2> ..]
Process only the specified ObsId or ObsIds. If multiple ObsIds are desired they must be in a quoted
list separated by space, e.g.

 yaxx -obsid "1232 411 522"

-src <src> [<src2> ..]
Process only the specified source or sources. If multiple sources are desired they must be in a quoted
list separated by space.

-preclean <file_group> [<file_group> ..]
The typically used values for <file_group> are listed below. In addition, it is possible to specify any
of the file types given in the <file_definition> block of the system-level yaxx.cfg file.

all
Start from scratch by removing all output files. This does not touch the source and background
region files defined for each source since they may have been manually edited.

region
Remove the src.reg and bkg.reg region files in the source directory.

extract
Spectral extraction processing outputs

fit
Sherpa fitting outputs

source_image
Color 2-d image of source and extraction regions from PGPLOT

report
Final LaTeX/postscript and HTML reports

log
Log files kept in the source directory.

resources_dir
Directory containing local copies of yaxx resource files such as fit templates, report templates,
and HTML images.

-summary <model_name>
This is a special mode of yaxx that can be run after all processing has successfully completed and
you are happy with the results. For a given fit model, it creates a summary FITS file containing all of
the fit parameter values (with lower/upper limits), fit statistics, and object list data. The output is a
file named summ_<model_name>.fits. Because different models have different fit parameters, this

must be run separately for each fit model. For instance the command

 yaxx -summary pl

will produce a file named summ_pl.fits with a row entry for each source that was fit with the pl
model.

Pausing yaxx

For very long processing runs yaxx can be told to pause its run in order to free up processor resources, e.g.
during the day when users are working interactively on the computer. This is done by creating a file
named yaxx_pause in either the home or analysis directories. This is most easily done with the Unix touch
command, which creates an empty file if none exists. Yaxx checks for this file at the beginning of
processing for each new source, and will wait until the file is removed before continuing.

Yaxx Output Data Files
The analysis data files associated with yaxx processing have the structure:

 <output_dir>/obs<obsid>/src<src>

The files unique to an ObsId are stored in the obs<obsid >> directory, and those unique to the particular
source are in the src<src >> (i.e. the ‘‘source’’ directory). Some of the more useful files in the source
directory are:

 acis*.pi : The various pi (or pha) spectral files for fitting
 acis*.rmf : RMFs
 acis*.arf : ARFs
 <fit_model>.in : Sherpa script used to fit <fit_model>, e.g. pl.in
 <fit_model>.mdl: Sherpa MDL file for <fit_model>
 report.html : Final fit summary report (HTML)
 report.ps : Final fit summary report (postscript)
 report.tex : Final fit summary report (latex)
 log : Processing log. log<n> files are old logs

Further analysis in Sherpa

The <fit_model.in >> file is a very useful starting point for doing more detailed or interactive spectral
fitting of a particular source. One can exactly recreate the yaxx fitting steps in sherpa by doing:

 cd obs3102/src1
 sherpa
 use <fit_model>.in

The Sherpa MDL file contains a full record of the fit for a particular model and can be used to easily
recover both the source data and final fit values. This allows the user to easily pick up with interactive
fitting from where the yaxx fit finished with the Sherpa command:

 read mdl <fit_model>.mdl

HTML and postscript summary reports

Assuming the processing is successful, examine the results with

 firefox <output_dir>/report_index.html

where firefox can be replaced by the name of your favorite web browser. This shows the yaxx report
index which links to report pages for the individual sources. The report page shows a summary of the
source parameters, an image of the source and the extraction regions used, a table of spectral fit results,
and plots of the spectral model fits. If there are multiple sources then the individual reports are linked
together by the arrows in the upper left corner of each report.

A latex/postscript report is also created and can be viewed with:

 gv obs<obsid>/src<src>/report.ps

The LaTeX fit parameter table within report.tex can conveniently be inserted into a manuscript to create a
table on spectral fit results.

Processing results FITS table
After successfully processing the entire sample it is possible to generate a FITS table with the results of
processing for each source in the sample. For a given fit model, yaxx will create a FITS file containing all
of the fit parameter values (with lower/upper limits), fit statistics, and object list data. The output is a file
named summ_<model_name>.fits. Because different models have different fit parameters, this must be
run separately for each fit model. For instance the command

 yaxx -summary pl

will produce a file named summ_pl.fits with a row entry for each source that was fit with the pl model.

Other Extractors

ACIS Extract

The ACIS Extract package http://www.astro.psu.edu/xray/docs/TARA/ae_users_guide.html is similar to
yaxx but has significantly more functionality, developer effort, and documentation. For those with access
to IDL this is certainly a tool that should investigated. Yaxx is a complementary tool, designed with an
emphasis on ease of use and based on free open source software.

Xassist

Xassist (http://xassist.pha.jhu.edu/xassist/manual/xassist.html) is another X-ray extractor that can support
automated processing and limited spectral fitting of Chandra ACIS data. This NASA funded project is
based on Python scripts and compiled C/C++ code.

http://www.astro.psu.edu/xray/docs/TARA/ae_users_guide.html
http://xassist.pha.jhu.edu/xassist/manual/xassist.html

Copyright and Licence
Copyright (C) 2006 by the Smithsonian Astrophysical Observatory

This code is released under the GNU General Public License. You may find a copy at
http://www.fsf.org/copyleft/gpl.html.

Acknowledgments
TLA gratefully acknowledges support for the development of yaxx from NASA under NASA grant
NAS8-39073 and CXC archival research grant AR2-3009X. This project would not have been possible
without the substantial efforts of many perl module developers and maintainers of the CPAN.

http://www.fsf.org/copyleft/gpl.html

	Yaxx Reference Manual
	Overview
	Citation
	CIAO environment
	Analysis Root Directory
	Chandra Input Data
	Object List File
	Examples
	Yaxx columns
	Non-yaxx columns
	Object List File Format

	Configuration Files
	Overview
	Configuration file format
	Project parameters
	System parameters

	Run yaxx
	Reprocessing
	Spectral fitting with Sherpa
	Key parameters
	Background subtraction and fitting

	Command line options
	Pausing yaxx

	Yaxx Output Data Files
	Further analysis in Sherpa
	HTML and postscript summary reports

	Processing results FITS table
	Other Extractors
	ACIS Extract
	Xassist

	Copyright and Licence
	Acknowledgments

