Chandra's PSF: Use it Wisely

Diab Jerius

Smithsonian Astrophysical Observatory

2014 Chandra Calibration/Ciao Workshop

Diab Jerius (SAO)

Chandra's PSF

CCCW 2014 1 / 41

Outline

All you need to know

The Hardware

- Wolter–I Optics
- Energy Response
- Focal Surface

PSF

- 1D
- 2D
- Detector Effects
 ACIS
 HRC-I
- Analysis Approaches
- 6 Resources

All you need to know

All you need to know (almost...)

The best Astrophysical X-ray mirrors ever made 1" resolution

イロト イポト イヨト イヨト

Outline

Grazing vs. Normal Incidence Optics

X-ray optics are unlike most visible optics systems -

Grazing vs. Normal Incidence Optics

X-ray optics are unlike most visible optics systems -

Normal Incidence

Ritchey-Chrétien

http://commons.wikimedia.org/wiki/File:Diagram_Reflector_RitcheyChretien.svg

Diab Jerius (SAO)

Chandra's PSF

CCCW 2014 6 / 41

Grazing Incidence (Wolter-I)

Grazing Incidence, A schematic view

Peculiarities of Wolter-I Optics

- The projected geometric area is small
- Optics are nested to increase the projected geometric area
- Grazing angles are different for each nested shell, so the energy response differs
- Focal *surface* is not a *plane*, but curved
- Each nested shell has a differently shaped focal surface.
- Good on-axis PSF, degrading off-axis

Total Effective Area (A_{eff})

Fractional contributions of Shells to A_{eff}

Focal Surface

Geometric Focal Surfaces

Focal Surface

Combined Energy Dependent Focal Surfaces

Focal Surface & Detectors

How do the imaging detectors interact with the focal surface?

- ... The ACIS-I chips are tilted to approximate the low-energy focal surface
- ... The ACIS-S array is curved to match the gratings' Rowland surface.
 - ... The S3 chip is fairly tangent to the focal surface on-axis
- ... HRC-I is tangent to the focal surface on-axis

ACIS Layout

イロト イヨト イヨト イヨト

ACIS Layout

Diab Jerius (SAO)

The Hardware

Focal Surface

Vignetting

Diab Jerius (SAO)

Chandra's PSF

→ < E > E < つ < 0 CCCW 2014 17/41

PSF

Outline

- All you need to know The Hardware • Wolter–I Optics • Energy Response • Focal Surface PSF
 - 1D
 - 2D
- Detector Effects
 ACIS
 HRC-I
- Analysis Approaches
- 6 Resources

On-Axis Enclosed Counts Fraction (ECF)

PSF

1D

On-Axis Enclosed Counts Fraction (ECF)

PSF

1D

Off-Axis - 85% ECF

Diab Jerius (SAO)

Chandra's PSF

CCCW 2014 20/41

PSF 1D **On-Axis**

Ideal Detector (HRC-I pixels)

2D

PSF

Diab Jerius (SAO)

Chandra's PSF

CCCW 2014 21 / 41

イロト 不得 トイヨト イヨト 二日

PSF

2D

Off-Axis: 1.49 keV

Diab Jerius (SAO)

PSF

2D

Off-Axis: 6.4 keV

Artifact

There is an anomalous "blob" $\sim 0.6^{\prime\prime}$ from the PSF Core.

http://cxc.harvard.edu/ciao/caveats/psf_artifact.html

Diab Jerius (SAO)

Outline

Wolter–I Optics Energy Response Focal Surface 1D 2D **Detector Effects** ACIS HRC-I

ACIS

Pileup (Mrk 421 OBSID 1714)

ACIS

Pileup: Definition

Pileup occurs when 2 or more photons arrive in a 3×3 detect island in a single ACIS frame.

Diab Jerius (SAO)

Chandra's PSF

▶ ৰ ≣ ୬ ছ ৩ ৭ ৫ CCCW 2014 27/41

Pileup: Effects

Pileup results in:

- Spectral distortion
 - ... 2 photons → 1 event with higher energy
- Grade distortion
 - ... merging charge clouds morph "good" events \rightarrow "bad" ones
 - ... loss of event

Pileup effects the PSF via:

- Loss of events in dense regions of PSF → craters
- grade morphing confuses Sub-pixel Event Reconstruction (SER)

HRC-I: Ghosts

HRC-I artifacts (ghost "jets") are *usually* filtered out of evt2 files, but residues may remain for bright sources

AR Lac (OBSID 13182)

D	ial	h .	lei	ti u	s i	(S)		
-	1 Ca			10	u		\sim	

Chandra's PSF

CCCW 2014 29 / 41

HRC-I: Bright source PSF broadening

Some events have an additional blur component if they:

- $\bullet\,$ occur less than \approx 50 msec after their preceding event
- are physically proximate to the preceding event

Outline

Overview

The Chandra PSF is

- ... marvelous
- ... complex
- ... marvelously complex
- It varies with energy and source off-axis and azimuthal position
- The detectors don't necessarily follow the focal surface
- The detectors aren't perfect
- The optics aren't perfect

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Skepticism

To best use it:

Be Skeptical

- Understand the vagaries of the PSF
- Understand how the detectors interact with it
- Be sure that structure is real.

Simulate, Simulate, Simulate

Analysis Approaches

Example: Low-count confusion

Jet? Multiple Sources? No! Off-axis point source.

CCCW 2014 34 / 41

Simulation Tools

MARX

- ... a first-order model of the mirrors
- ... models of the HRC and ACIS detectors
- ... models of the HETG and LETG gratings
- ... point and extended sources
- SAOTrace
 - ... a detailed model of the mirrors
 - ... point and extended sources

It relies on MARX or the CIAO psf_project_ray tool to model detectors.

ChaRT

- ... web front-end to SAOTrace
- ... does not simulate telescope dither
- ... point sources only

Diab Jerius (SAO)

Chandra's PSF

Quantitative Analysis Techniques

- Monte-Carlo simulations of observations
 - ... sensitivity analysis of source parameters
 - ... explore systematics in system models
- ID and 2D Source fits
 - ... CIAO provides sherpa fitting package

But...

- The models are not perfect
- Understand the limitations of the Optic and Detector models

How good are the models?

SAOTrace

- Backed by ground calibration
- 1D model good to $\sim 10^{\prime\prime}$
- Still working on PSF wings (beyond $\sim 10^{\prime\prime})$
- 2D model qualitatively correct
- A_{eff} & Vignetting correct

MARX Detectors

- Semi-emperical
- Not physics-based

イロン イ理 とく ヨン・

Qualitative Analysis Techniques

- ACIS Sub-pixel Event Reconstruction (SER)
 - uses ACIS event grades to improve image resolution
 - on by default in standard products
 - not calibrated
 - use to identify interesting structure; use non-SER data for quantitative measurements
- Deconvolution
 - CIAO provides Lucy-Richardson via arestore.
 - USE SAOTrace (or ChaRT) simulations
 - does not preserve flux; use to identify interesting structure; use non-SER data for quantitative measurements
 - Not everything you see is real.
- Adaptive Smoothing
 - CIAO provides csmooth, dmimgadapt.
 - does not preserve flux; use to identify interesting structure; use non-SER data for quantitative measurements
 - Not everything you see is real.

What's Possible

Karovska et al., ApJ Letters, 710 132, 2010

Diab Jerius (SAO)

Chandra's PSF

CCCW 2014 39 / 41

Resources

Outline

Wolter-I Optics Energy Response Focal Surface 1D 2D ACIS HRC-I

Resources

Diab Jerius (SAO)

Resources

- Calibration web site http://cxc.harvard.edu/cal/
- Calibration Workshop Presentations http://cxc.harvard.edu/ccr/
- CIAO Imaging Threads and Guides
- CXC Help Desk

http://cxc.harvard.edu/helpdesk/

- Others have done this before. Check the literature, especially if you're trying something tricky
 - WebChaser

http://cda.harvard.edu/chaser/

 Chandra Data Archive bibliography search http://cxc.harvard.edu/cgi-gen/cda/bibliography