
Version 1.05 March 2001Chandra X-ray CenterSmithsonian Astrophysical Observatory60 Garden StreetCambridge, MA 02138USAWWW: http://asc.harvard.edu/

ii

Contents
Contributors xiiiPreface and Acknowledgements xvI Introduction to TCD 11 Overview of TCD 31.1 What is TCD ? . 31.2 Organization of this Guide . 41.3 Input �le considerations . 41.4 aconvolve . 41.4.1 Parameters to set . 41.4.2 Running the task . 51.5 acrosscorr . 51.5.1 Parameters to set . 51.5.2 Running the task . 61.6 apowerspectrum . 61.6.1 Parameters to set . 61.6.2 Running the task . 71.7 atransform NOT CURRENTLY RELEASED . 7iii

iv CONTENTS1.7.1 Parameters to set . 71.7.2 Running the task . 71.8 csmooth . 81.8.1 Parameters to set . 81.8.2 Running the task . 9II TCD Cookbook 112 Convolve 132.1 Description . 132.2 Parameters . 132.2.1 Input and output speci�ers . 132.2.2 Processing parameters . 142.3 Side e�ects and Restrictions . 152.4 Example 1 . 163 Crosscorrelate 193.1 Description . 193.2 Parameters . 193.2.1 Example: Cross correlation . 193.3 Example: Auto-correlation . 214 Powerspectrum 254.1 Description . 254.2 Parameters . 254.3 Example . 265 Transform - NOT CURRENTLY RELEASED 29

CONTENTS v5.1 Description . 295.2 Parameters . 295.2.1 Filenames . 295.2.2 Processing parameters . 305.3 Syntax . 305.4 FFT . 305.4.1 Padding . 315.4.2 Sidee�ects and Restrictions . 315.4.3 Example 1 . 316 Csmooth 356.1 Description . 356.1.1 Parameters . 356.2 Example . 36III TCD Theory 437 Theory 457.1 aconvolve . 457.2 Correlation . 467.3 Power Spectrum . 477.4 Transforms . 487.5 Csmooth: Adaptive Smoothing . 487.5.1 Introduction . 487.5.2 Characteristics of Asmooth . 507.5.3 Description of the algorithm . 51

vi CONTENTSIV TCD Reference Manual 558 TCD Tools: Input Parameters & Data Products 578.1 aconvolve . 578.1.1 aconvolve: input parameter �le - with default values 578.1.2 aconvolve: Input Parameter Description . 588.1.3 aconvolve: Data Products Description . 638.2 acrosscorr . 638.2.1 acrosscorr: input parameter �le - with default values 638.2.2 acrosscorr: Input Parameter Description . 638.2.3 acrosscorr: Data Products Description . 658.3 apowerspectrum . 668.3.1 apowerspectrum: input parameter �le - with default values 668.3.2 apowerspectrum: Input Parameter Description . 678.3.3 apowerspectrum: Data Products Description . 698.4 atransform . 698.4.1 atransform: input parameter �le - with default values 698.4.2 atransform: Input Parameter Description . 708.4.3 atransform: Data Products Description . 738.5 csmooth . 738.5.1 csmooth: input parameter �le - with default values . 738.5.2 csmooth: Input Parameter Description . 748.5.3 csmooth: Data Products Description . 77Bibliography 79

List of Figures
2.1 HRC-I simulation with extended source . 172.2 A smoothed version of the HRC simulation . 183.1 Input maps for cross correlation . 203.2 The crosscorrelation of two similar �elds . 223.3 An example of an auto-correlation output. 234.1 Output maps from HRC powerspectra . 275.1 An ACIS simulation of 6 unresolved sources plus an extended source. 326.1 An ACIS simulation of 6 unresolved sources plus an extended source 376.2 An ACIS simulation after running adaptive smoothing. 406.3 The scale map for csmooth on an ACIS simulation. 416.4 The signi�cance map for csmooth on an ACIS simulation. 42

vii

viii LIST OF FIGURES

List of Tables

ix

x LIST OF TABLES

Contributors to this document
Margarita Karovska Lead ScientistKen Glotfelty Software EngineerH. Ebeling Originator of the Asmooth algorithmD. E. Harris Editor, TCD User GuideJoan Flanagan Document Series Production (ASC)R. Kilgard Document Series Production (ASC)D. Martinez-Galarce Beta testerY. Zhou Software Developer

xi

xii

Preface and Acknowledgements
This Guide is designed to serve as an introduction, user's guide, and a reference manual to the TCD suiteof transforms and convolutions.We gratefully acknowledge the aid and support of various members of the Chandra project including ScienceData Systems group, and the Data Systems group.

- Margarita Karovska, March 5, 2001

xiii

xiv

Part I
Introduction to TCD

1

Chapter 1
Overview of TCD
1.1 What is TCD ?
Transforms-Convolutions-Deconvolutions (TCD) is a package of advanced analysis tools. The tools aredesigned as stand-alone tasks, although they also function as a library for use in other programs. The TCDpackage is expected to evolve with the addition of new tools from time to time. Currently, the followingtasks are operational:aconvolve: a convolution performed either in the map or Fourier plane; available functions include a box, aGaussian, and a tophat; a user supplied �le may also be used.acrosscorr: cross correlation and autocorrelationapowerspectrum: a power spectrumatransform: a fast Fourier transform; other functions will be added. (NOT CURRENTLY RELEASED.)csmooth: a set of smoothing algorithms. Currently it includes only 'asmooth', an adaptive smoothing code(Ebeling, 1999). Other functions will be added in the future.For each of these tools we include a brief desription of the purpose of the tool and instructions on how touse it in a very basic way. Examples are given in Part II and the algorithm descriptions are given in PartIII. All of the tools are designed to operate on image �les, so if a 1-D input is desired, the user should befamiliar with the DataModel �ltering schemes. 3

4 Chapter 1. Overview of TCD1.2 Organization of this GuideThe TCD User Guide is divided into four parts:I - This introductionII - a cookbook with examplesIII - the theory section describing the algorithms, andIV - the reference section which describes the details on input parameters and data products.1.3 Input �le considerationsAll the TCD tools only know how to deal with images. They can have any number of dimensions, butthey still must be images. The user is advised to consult the DataModel documentation to ensure that thecorrent syntax is used.1.4 aconvolveThis is a simple smoothing tool with options for a Gaussian function, a tophat, a user de�ned kernel, or auser supplied map.1.4.1 Parameters to setinfileThis should be an image; either in a FITS �le or an iraf '.imh' �le.kernelspecThe generic syntax for kernelspec is:key:parameters:originwhere 'key' is a �lename, 'txt', or 'lib'. If the �lename option is chosen, that �le will be the convolvingfunction. The 'txt' option allows an ASCII description of a function, and 'lib' allows a choice among'box', 'gaus', and 'tophat' (from the library). The parameter speci�cation will be described elsewhere (seesection 8.1.2) and 'origin' is used to describe the placement of the convolving function. For a simple Gaussiansmooth, we use lib:gaus(2,8,1,2.12,2.12); the leading '2' is for two dimensions, the '8' speci�es how large tomake the convolving function (in units of �), the '1' is the normalization, and the last two values are the �of the Gaussian in pixels.methodThere are two values permitted for this parameter: 'slide' and '�t'. The default is 'slide' which is a bruteforce convolution in the map plane and the latter is a Fast Fourier Transform implementation. If the data

1.5. acrosscorr 5array is small (less than 512) you can safely use 'slide'. Choosing '�t' results in faster running, but withlimited memory available, a segmentation violation may occur.outfileThis is the �lename for the output.1.4.2 Running the taskFor an initial test run, select an image that is not too large; say 512x512 or less. Check your setup, enterthe necessary parameters, check the parameter �le, and run the tool.unix: which aconvolve/home/ascds/DS.release/bin/aconvolveunix: pset aconvolve infile=hrc_b8_250.fitsunix: pset aconvolve kernelspec= "lib:gaus(2,8,1,2.12,2.12)"unix: pset aconvolve outfile=hrc_smo8.fitsunix: plist aconvolveunix: aconvolveThe output image is a smoothed array. Note that the convolved image does not conserve counts, even whenthe normalization of the kernel is set to one.1.5 acrosscorracrosscorr is a simple tool to perform an autocorrelation of an image, or to cross correlate two images.1.5.1 Parameters to setinfile1The �lename of the �rst input image.infile2The �lename of the second input image. If an autocorrelation of infile1 is desired, infile2 should be setto 'none'.outfileThe name to assign to the output �le.center

6 Chapter 1. Overview of TCDSetting center to 'yes' will cause the zero-o�set point to be in the center of the output image.1.5.2 Running the taskSelect an image, check your setup, enter the necessary parameters, check the parameter �le, and run thetool.unix: which acrosscorr/proj/cm3/Release/install.R4CU3/bin/acrosscorrunix: pset acrosscorr infile1="../120Bdew256.fits"unix: pset acrosscorr infile2="../120Bdew256_10_smo.fits"unix: pset acrosscorr outfile="cross120Bdew0_10.fits"unix: pset acrosscorr center=yesunix: plist acrosscorrunix: acrosscorrIn this simple example, we cross correlated an image of 3C 120 containing counts with a smoothed versionof the same image. Since the smoothing function was larger than the source structure, the cross corellationimage reected the size of the smoothing function and was circularly symetrical to �rst order.1.6 apowerspectrumThe power spectrum of a function or distribution is the square of the amplitude of the Fourier transform.The current implementation employs a FFT and is designed to work on multi-dimensional images.1.6.1 Parameters to setinfilerealThis is the �lename of the real component of the input data.infileimagThis is the �lename of the imaginary component of the input data. For normal data, this entry should be'none'.outfileThe desired name of the output �le.

1.7. atransform NOT CURRENTLY RELEASED 71.6.2 Running the taskThe tool is designed to run on images of arbitrary size, but for test runs, we suggest choosing an image thatis 512x512 or less. Check your setup, enter the necessary parameters, check the parameter �le, and run thetool.unix: which apowerspectrum/home/ascds/DS.release/bin/apowerspectrumunix: pset apowerspectrum infilereal=120Bdew256.fitsunix: pset apowerspectrum infileimag=noneunix: pset apowerspectrum outfile=pow120.fitsunix: plist apowerspectrumunix: apowerspectrumThe output map displays the amplitude of spatial frequencies which, if there is a dc signal (i.e. one or morestrong sources), will be largest close to the origin (and aliased to other corners of the array).1.7 atransform NOT CURRENTLY RELEASEDEventually, this task will contain several di�erent types of transforms. Currently, the only implementationis the fast Fourier transform.1.7.1 Parameters to setinfilereal, infileimagNormally, when doing a forward transform, the real input will be the data map and the imaginary part willbe \none" (the default value). However, when reversing the direction, both parts must be speci�ed.outfilereal, outfileimagBoth of these names should be speci�ed.1.7.2 Running the taskSelect an image, check your setup, set the �lenames, check your parameter �le, and run the program.unix: which atransform/home/ascds/DS.release/bin/atransformunix: pset atransform infilereal=4c41_b8_512_sm20.fitsunix: pset atransform outfilereal=atran_4c41sm.fitsunix: pset atransform outfileimag=atrani_4c41sm.fits

8 Chapter 1. Overview of TCDunix: plist atransformunix: atransformThe output image shows the non-vanishing amplitudes of spatial frequencies clustered around zero (and,from aliasing, the other corners of the image).1.8 csmoothcsmooth is an implementation of an adaptive smoothing code ('ASMOOTH') conceived by Ebeling et al.(2000). Adaptive smoothing is a technique which adjusts the size of the smoothing kernal to match thelocal surface brightness (e.g. counts per pixel) so that some user de�ned signi�cance level will be achievedthroughout the image. Thus in regions of high brightness, the smoothing function is of a small scale; whileat low brightness, the function automatically increases to larger scales.At the present time, the code contains only two options for the smoothing kernal: a tophat or a circularlysymetric Gaussian. The computation is done either by brute force ('in the map plane') or by the FFTmethod. The former is cpu intensive and users are warned to choose very small arrays initially (e.g. 64x64or 128x128). The FFT method on the other hand is memory limited.1.8.1 Parameters to setThere are a large number of parameters under the user's control to �ne tune the operation. Many of thesewill be discussed in chapter 6 and section 7.5. Here we give a simple example using default values.infileThis is the �lename of the input image.outfileThe name for the output �le.outsigfileThis is the name for the output map which has the signi�cance for each output pixel.outsclfileThe name for the output map which contains the smoothing scale for each pixel.conmethThis parameter can have one of two values: '�t' or 'slide'. The 'slide' option operates in the map plane andtake a long time to run unless the arrays are very small. The edges are dealt with by renormalizing the theconvolving function as it runs o� the edge of the map to compensate for the reduced area. The '�t' optionis much faster, but the edges are wrapped and thus artifacts are often present near edges.

1.8. csmooth 91.8.2 Running the taskSelect an image, check your setup, enter the necessary parameters, check the parameter �le, and run thetool.unix: which csmooth/proj/cm3/Release/install.R4CU3/bin/csmoothunix: pset csmooth infile="../acis_128_pts.fits"unix: pset csmooth outfile="cs_acis_128_pts.fits"unix: pset csmooth outsigfile="csig_acis_128_pts.fits"unix: pset csmooth outsclfile="cscl_acis_128_pts.fits"unix: plist csmoothunix: csmoothThis run on a 128 image took 39 minutes on a SUN SPARCstaion 5. If we had not used the FFT method,it would have been considerably longer.The low levels of the smoothed result show some unexpected asymetries. The signi�cance map shows evidenceof aliasing and computational e�ects at low levels.

10 Chapter 1. Overview of TCD

Part II
TCD Cookbook

11

Chapter 2
Convolve
2.1 Descriptionaconvolve is an open-iraf C program and is used to convolve an N-dimensional image with a kernel. Thekernel can be speci�ed as either a �le (image), a function, or speci�ed on the command line. Other thanmemory restrictions of the machine, there are no limits to the size or dimensionality of either the kernel orimage (i.e. kernel could be larger than image).The convolution of a data set with a kernel yields a measure of "how much" the data set looks like the kernelat every location in the data set. Another way to think about the convolution operation is a �ltering of thedataset by the kernel.The input parameter �le controls the type of convolution. The following convolution methods are imple-mented:� Sliding Cell� FFT convolveThe 'sliding cell' is a 'brute-force' method which operates in the map plane whereas the FFT is just theusual Fourier Transform method. The former requires more cpu time for larger arrays.2.2 Parameters2.2.1 Input and output speci�ersinfile, outfileThe input is commonly a FITS image but other formats supported by the DataModel such as IRAF .imh�les are also possible. The input image can have any number of dimensions.13

14 Chapter 2. ConvolveThe input can have the following data types: "short" (BITPIX=16), "long" (BITPIX=32), "oat"(BITPIX=-32), and "double" (BITPIX=-64).The output �le is a FITS image which has the same dimensions as the input image. The output data typeis always "oat" (BITPIX=-32).kernelspecThe convolving function (a.k.a. 'kernel') can be de�ned in three ways: as a call to the library functions, asa user-provided �le, or as an ASCII descriptor. These options, each with its own parameters, are selectedvia one input parameter, kernelspec. The generalized syntax is:<key>:<parameters>:<origin>Where 'key' can take on one of the three values: '�le', 'txt', or 'lib'. The possibilities for 'parameters' aredetermined by which 'key' is chosen, and the 'origin' speci�cation is often not necessary, but can be usefulfor particular choices. A more extensive description of kernelspec is given in section 8.1.2.writekernel, kernelfileIf the user wants to obtain a �le with the kernel used (obviously not necessary if key=�le), writekernelshould be set to 'yes' and a �lename should be supplied for kernelfile. The default value for writekernelis 'no'.writefft, fftroot, centerIf �les of the Fourier Transform are to be preserved, writefft should be set to 'yes' and a root �lenameshould be provided (fftroot). This option will provide the FFT of both the input data and the kernel. Thedefault for writefft is 'no'. The parameter center is currently inoperative.2.2.2 Processing parametersedges, constAs the kernel moves across the data, the edge of the kernel may fall o� the data space. When this happensthe program needs to know how the user wants to handle the edges. Four methods for handling the edgesare implemented: For the 4 cases described below, consider the following example data space: data = 1, 2,3. edges = wrapWhen the kernel runs o� the data space, it is wrapped around the data. Thus the data go ...1,2,3,1,2,3,1,2,3...edges = nearestWhen the kernel runs o� the data space, extrapolate the data nearest to the edge, e.g. data go...1,1,1,2,3,3,3,3,3...

2.3. Side e�ects and Restrictions 15edges = mirrorWhen the kernel runs o� the data space, reect the data nearest the edge, e.g. data go ...3,2,1,1,2,3,3,2,1...edges = constantWhen the kernel runs o� the data space, use the constant supplied by the const parameter (e.g. const=0)therefore the data go ...0,0,1,2,3,0,0,..Implicitly, using the FFT method of convolution implies wrapping edge treatment.methodThere are two options for the calculation: 'slide' and '�t'. If the user is satis�ed with edges=wrap, the �toption is preferred since it is faster and will produce the same results.Sliding cell convolution is convolution from �rst principles.O(a1,a2,...aN) = S_x1 S_x2... S_xN I(x1,x2,..xN)*K(a1-x1,a2-x2,...aN-xN).[replace S_x buy summation signs]For the FFT method, the Fourier Transform of the data and the kernel is computed. The arrays are multipliedand the inverse FFT is taken. Internally the kernel and data MUST be the same size. The program will padthe smaller with 0's. If the edges of the data are "wrapped" (see below) then the FFT and slide methodswill yield the same results.padThe user can specify that the data be padded such that the length of each data axes is promoted to the nextinteger power of 2. The data are always padded on the "right" hand side, thus the array 1,2,3,4,5 would bepadded to 1,2,3,4,5,0,0,0.2.3 Side e�ects and RestrictionsAll computations are done in single oating point precision.If the program fails for some reason, it will exit and return with a status not equal to zero.For the FFT method, if arrays are too large for the memory available, a segmentation fault or ERRORmessage about memory allocation may occur.The current version of aconvolve does not conserve counts even when the normalization of the kernel is setto one.

16 Chapter 2. Convolve2.4 Example 1We wish to smooth a Chandra simulated image which is a 512x512 primary FITS image as seen in �gure 2.1.We check the setup, set the parameters, view the parameter �le and run the program.unix: which aconvolve/proj/cm3/Release/install.R4CU3/bin/aconvolveunix: pset aconvolve infile ="../hrci512ext.fits"unix: pset aconvolve kernelspec ="lib:gaus(2,5,1,10,10)"unix: pset aconvolve outfil=hrci512ext_10.fitsunix: plist aconvolveunix: aconvolveThis run took 5 hours on a SPARCstation 5. If the �t option had been chosen, it would have been muchfaster. In this example we chose a Gaussian kernel from the library. The 5 numerical parameters are '2' forthe number of dimensions, '5' for the size of the kernel in units of �, '1' for the amplitude of the kernel, anda '10' for the x and y values of � for the kernel (in pixels).The results are shown in �gure 2.2.

2.4. Example 1 17

Figure 2.1: An HRC simulation with 6 point sources in a line plus an extended Gaussian source with a � of25 arcsec.

18 Chapter 2. Convolve

Figure 2.2: The results of running aconvolve with a Gaussian kernel with �=10 pixels on the HRC simulation.

Chapter 3
Crosscorrelate
3.1 DescriptionThe tool acrosscorr performs a cross correlation or an auto-correlation using Fourier transforms. For a crosscorrelation, the two input images should have the same number of dimensions.3.2 ParametersThere are very few parameters for this simple tool.infile1, infile2, and outfileFor a cross correlation, provide the appropriate names for the two input images. If infile2 is set to 'none',this is the switch which produces an auto-correlation instead of a cross correlation.crop, pad, and centerThese 3 boolean parameters (values of 'yes' or 'no') provide the only choices for this tool. If crop is set to'yes', the output image is cropped to the size of infile1. If pad is set to 'yes', the input data are padded tothe size of infile1 + infile2. If center is set to 'yes', then the zero shift point appears in the center ofthe output map rather than in the corner (at pixel 1,1).3.2.1 Example: Cross correlationIn �gure 3.1 we show the two input maps. The �rst consists of 6 sources in a line, The �rst two are separatedby only 0.5 arcsec so appear as a single source with the HRC. The next two are separated by one arcsec, andproduce a clearly extended distribution. The second image contains the same 6 sources but has in addition19

20 Chapter 3. Crosscorrelate

Figure 3.1: Simulated HRC data. The �rst �eld has 6 unresolved sources in a line. The other �eld showsthe second input image which has the same sources but in addition, has an extended source.an extended source centered at the same position as the sixth unresolved source. As can be seen, the linesof sources are not at the same pixel location in the images.We check the setup, set the relevant parameters, review the parameter list, and run the program.unix: which acrosscorr/proj/cm3/Release/install.R4CU3/bin/acrosscorrunix: pset acrosscorr infile1="../hrci512pts.fits"unix: pset acrosscorr infile2="../hrci512ext.fits"unix: pset acrosscorr outfile=cross_hrc512pts_ext.fitsunix: pset acrosscorr center=yesunix: plist acrosscorrParameters for /home/user/ascds_iraf/uparm/acrosscorr.par## acrosscorr.par file## inputs# infile1 = ../hrci512pts.fits Input file name #1infile2 = ../hrci512ext.fits Input file name #2. Use none for# autocorrelate## output# outfile = cross_hrc512pts_ext.fits Output file name

3.3. Example: Auto-correlation 21## processing params# (crop = no) Crop output to size of infile1(pad = no) Pad data to size of infile1 +# infile2(center = yes) Center output## user# (clobber = yes) Clobber existing output file(verbose = 0) Debug level(kernel = default) Output format kernel## mode# (mode = ql)unix: acrosscorrInput file name #1 (../hrci512pts.fits):Input file name #2. Use none for autocorrelate (../hrci512ext.fits):Output file name (cross_hrc512pts_ext.fits):The resulting map is shown in �gure 3.2.3.3 Example: Auto-correlationWe take the same images shown in �gure 3.1 to illustrate the auto-correlation simply by setting infile2= none. The results for the �eld containing the extended emission are shown in �gure 3.3. A similar runon the other �eld (without the additional extended source) produces essentially the same pattern, but theabsolute value of the correlation peak is lower and, without the extended source, the lower levels (away fromthe main line of correlation features) are a smaller percentage of the peak value.

22 Chapter 3. Crosscorrelate

Figure 3.2: The results of acrosscorr run on the two �elds shown in �g. 3.1. Since center was set to 'yes',the maximum correlation occurs towards the upper right at a distance from the center corresponding to theshift necessary so that the array of 6 unresolved sources in map 2 are aligned with their counterparts in map1.

3.3. Example: Auto-correlation 23

Figure 3.3: The auto-correlation image for the HRC example of 6 unresolved sources plus an extended source.Since center was set to 'yes', the peak occurs at the map center.

24 Chapter 3. Crosscorrelate

Chapter 4
Powerspectrum
4.1 Descriptionapowerspectrum uses an FFT on an N-dimensional image and produces the square of the amplitudes for thefrequency components of the transform.4.2 Parametersinfilereal, infileimag, outfileThese �lenames are required, although 'none' is the default for infileimag, the imaginary part of the input.The usual DataModel conventions are followed for input and output.padThis is boolean parameter. If set to 'yes', then the input data will be padded in each dimension to attainthe next power of two.centerSetting center to 'yes' causes the zero frequency point to be at the center of the output array.scaleThis parameter simply determines the absolute value of the output map. The choices are 'linear' (which isthe default) meaning simply the square of the amplitude of the frequency components; 'log' which gives thelogorithm to the base ten; and 'db' ('decibels') which gives 10 times the log value.crop 25

26 Chapter 4. PowerspectrumIf crop is set to 'yes', only frequencies up to the Nyquist frequency will be output.4.3 ExampleTo examine the distribution of spatial frequencies in the maps used in chapters 2 and 3, we make a powerspectrum for the array of 6 point sources, the same plus the extended source; and the smoothed version ofthe latter. These input maps are shown in �gures 3.1 and 2.2.One of these runs was performed thusly:unix: which apowerspectrum/proj/cm3/Release/install.R4CU3/bin/apowerspectrumunix: pset apowerspectrum infilereal=''../hrci512ext.fits''unix: pset apowerspectrum outfile=''pow_hrci512ext.fits''unix: pset apowerspectrum center=yesunix: plist apowerspectrumParameters for /home/user/ascds_iraf/uparm/apowerspectrum.par## apowerspectrum tool## inputs# infilereal = ../hrci512ext.fits Input file name for real partinfileimag = none Input file name for imaginary part## output# outfile = pow_hrci512ext.fits File name for output## processing# (pad = no) Pad data array to next power of 2(center = yes) Center 0 frequency at center of# array (scale = linear) Output scale(crop = no) Crop output at Nyquist frequency## user# (clobber = yes) Delete existing output(verbose = 0) Debug level(kernel = default) Output format kernel## mode# (mode = ql)

4.3. Example 27

Figure 4.1: Power spectra of HRC simulations. The �rst map is for the line of 6 unresolved sources. Thesecond is for the same sources but with an extended source added. The last map is the same as the secondexcept it has been smoothed with a Gaussian of �=10 pixels. The peak amplitudes are 5.82, 52.6, and2�107, respectively. The noise level in the �rst two maps is �0.1, but in the last it is <10�11. Inserts showthe central region in more detail.unix: apowerspectrumInput file name for real part (../hrci512ext.fits):Input file name for imaginary part (none):File name for output (pow_hrci512ext.fits):The resulting maps are shown in �gure 4.1. Since we set center='yes', the non-zero amplitudes of spatialfrequencies appears at the center of the maps. The basic spatial frequency structure of an individual sourceis represented by the distribution in PA=45�. In PA -45� there is more structure caused by enhancementof those frequencies which correspond to the source placement along the line. The power spectrum of thesmoothed map is essentially noise free and the the size of the region containing signi�cant amplitudes issigni�cantly reduced.

28 Chapter 4. Powerspectrum

Chapter 5
Transform - NOT CURRENTLYRELEASED
5.1 DescriptionTransform is an open-iraf C program and is used to compute various mathemtical transforms of an inputdata array.The available transforms are:� Fourier TransformAdditional functions will be added in the future. The transform and direction parameters control the typeof transform.5.2 Parameters5.2.1 Filenamesinfilereal, infileimagThe input �les are FITS images or IRAF .imh �les. The input images can have any number of dimensions.The input can have the following data type: "btye" (BITPIX=8), "short" (BITPIX=16), "long" (BIT-PIX=32), "oat" (BITPIX=-32), and "double" (BITPIX=-64).The real and imaginary parts are input seperately. If there is no real or imaginary part, then set theappropriate �le name to "none" or "NONE". 29

30 Chapter 5. Transform - NOT CURRENTLY RELEASEDCurrently, there MUST be a real part to the data. The imaginary part can be "none".outfilereal, outfileimagTwo output data �les are produced. They are both FITS images; the data type is always "oat" (BITPIX=-32). There is one �le for the real part of the transform and one for the imaginary part of the transform.5.2.2 Processing parameterstransformAt this time the only allowed value is '�t', and this is the default value.directionThis parameter determines the sense of the transform. The two allowed values are 'forward' and 'reverse'.The default value is 'forward'.padThis parameter can either be 'no' (the default) or 'yes'. The latter value will cause each data axis to bepadded with zeros (on the 'right hand' side) so that the dimension of each axis is a power of two.centerThe default for center is 'no', and this causes the zero frequency point to be located at pixel zero. Settingcenter to 'yes' causes the zero frequency location to be at the center of the output array.5.3 SyntaxCompute the N-D FFT of the data in the �le my data.�ts and save the real + imagainary parts inmy out xxxx.�ts.transform infilereal=mydata.fits infileimag=noneoutfilereal=myoutreal.fits outfileimag=myoutimag.fitstransform=fft direction=forward5.4 FFTThe Fast Fourier Transform (FFT) (invoked by setting transform = '�t') computes the discrete FourierTransform of a dataset with respect to one or more axes.

5.4. FFT 31By standard convention, in the forward direction the sign of the complex exponential is negative and inthe reverse direction the sign of the complex exponential is positive. In the forward direction, the data arenormalized by the area of the data.The FFT algorithm was adapted from the STSDAS FFT routine converted from FORTRAN to C and madeto work in multiple dimensions.5.4.1 PaddingAlthough the algorithm works on datasets of any length, to sped up the process the user can specify thatthe data be padded such that the length of each data axes is promoted to the next integer power of 2. Thedata are always padded on the "right" hand side, thus the array 1,2,3,4,5 would be padded to 1,2,3,4,5,0,0,0.5.4.2 Sidee�ects and RestrictionsAll computations are done in single oating point precision.If the program fails for some reason, it will exit and return with a status not equal to zero.5.4.3 Example 1Suppose we wish to determine the spatial frequencies of the ACIS simulation shown in �gure 6.1.We set the relevent parameters, check the complete parameter �le, and run the program:unix: which atransform/proj/cm3/Release/install.R4CU3/bin/atransformunix: pset atransform infilereal="../Smooth/acis_128_extmap.fits"unix: pset atransform infilereal="../Smooth/acis_128_extmap.fits"unix: pset atransform outfilereal="tr_acis128ext.fits"unix: pset atransform outfileimag="ti_acis128ext.fits"unix: plist atransformParameters for /home/user/ascds_iraf/uparm/atransform.par## atransform.par file## inputsinfilereal = ../Smooth/acis_128_extmap.fits Input file name for# real partinfileimag = none Input file name for imaginary part## outputs#

32 Chapter 5. Transform - NOT CURRENTLY RELEASED

Figure 5.1: A 128x128 ACIS simulation containing 6 unresolved sources in a line plus an extended source.Only 4 discrete sources are visible since the close separation for two pairs is not resolvable by ACIS.

5.4. FFT 33outfilereal = tr_acis128ext.fits File name for real part of outputoutfileimag = ti_acis128ext.fits File name for imaginary part of# output## processing parameters# transform = fft Transform typedirection = forward Transform direction(pad = no) Pad data array to next power of 2(center = no) Center 0 frequency at center of# array## user preferences# (clobber = yes) Delete existing output(verbose = 0) Debug level(kernel = default) Output format kernel## mode# (mode = ql)unix: atransformInput file name for real part (../Smooth/acis_128_extmap.fits):Input file name for imaginary part (none):File name for real part of output (tr_acis128ext.fits):File name for imaginary part of output (ti_acis128ext.fits):Transform type (fft) (fft):Transform direction (forward|reverse) (forward):NOTE: we cannot �nish this example until the center option is repaired. deh 11 July 1999.

34 Chapter 5. Transform - NOT CURRENTLY RELEASED

Chapter 6
Csmooth
6.1 Descriptioncsmooth is a tool to perform adaptive smoothing. If normal smoothing is required, the user should useaconvolve (chapter 2). The basic premise of adaptive smoothing attempts to adapt the size of the smoothingkernel to the local s/n ratio. Thus in regions containing strong point sources, a small kernel is used preservingthe inherent resolution of the data. For lower brightness regions (e.g. extended sources or the background)the size of the kernel increases, usually attempting to include enough counts so as to achieve a speci�eds/n ratio. In this chapter we give a simple example. Users are urged to explore the potential of the toolby experimenting with adjustment of hidden parameters (see section 8.5.2 or the help �le for parameterdescription).This version of csmooth is based on H. Ebeling's IDL code called 'ASMOOTH'. The code is now in C andmodi�cations have been made to permit the use of FFTs which are much faster but have the disadvantagethat they may introduce artifacts because the only possible edge treatment is wrapping. The sliding cellconvolution provides an option to use a renormalization routine for dealing with image edges which compen-sates for that fraction of the kernel which is outside the image, thus ensuring that no artifacts are introducedat the �eld edges.6.1.1 ParametersHere we consider the parameters required to run a simple example. For a complete description of allparameters see section 8.5.2.infileThis is the designation of the 2D image for the input.outfile, outsigfile, outsclfileThe result of running csmooth is outfile. outsigfile is a map containing the signi�cance of each pixel in35

36 Chapter 6. Csmoothoutfile. The scale size of the kernel used at each pixel is given in outsclfile.conmethThis parameter can have the value '�t' (the default) or 'slide'. In the former case the FFT method is usedand in the latter case, a brute force implementation is used. Note that designating '�t' means that the dataare wrapped around to pad the edges so as to accommodate the kernel as it moves toward the edge of theoriginal data. For the 'slide' method, the edges are padded with the particular constant=0, but the kernelis renormalized to compensate for the smaller area of the actual (non-zero) data.The FFT method requires substantial memory resources whereas the slide method requires a longer runtime. For these reasons, we suggest that �rst time users choose a small array (e.g. 128x128) and, if FFT ischosen, to select an array with dimensions that are 2N in size.conkerneltypeThe convolving function can be either 'gauss' or 'tophat'6.2 ExampleTo illustrate csmooth we take a subimage from an ACIS simulation. This is a 128x128 map which has 6unresolved sources in a line, and an extended source comprised of a Gaussian with � = 25 00 (see Figure 6.1).We check the setup, set the parameters, examine the parameter �le, and run the program.unix: which csmooth/soft/ciao/bin/csmoothunix: pset csmooth infile="../acis_128_ext.fits"unix: pset csmooth outfile="cs_acis_128_ext.fits"unix: plist csmoothParameters for /home/user/cxcds_param/csmooth.par## csmooth.par file## infile = ../acis_128_ext.fits input file name (raw image)outfile = cs_acis_128_ext.fits output file name (adaptively smoothed image)outsigfile = . output file name (image of the significance of the signal at each location of the smoothed image)outsclfile = . output file name (image of the smoothing scales [kernel sizes] used at each location of the image)## processing parameters# conmeth = fft Convolution method.conkerneltype = gauss Convolution kernel type.## Significance numbers

6.2. Example 37

Figure 6.1: A 128x128 ACIS simulation containing 6 unresolved sources in a line plus an extended source.Only 4 discrete sources are visible since the close separation for two pairs is not resolvable by ACIS.

38 Chapter 6. Csmooth# sigmin = 4 minimal significance (S/N ratio) of the signal under the kernelsigmax = 5 maximal significance (S/N ratio) of the signal under the kernel## Scales# sclmin = INDEF initial (minimal) smoothing scale in pixel, use INDEF for default (~1pixel)sclmax = INDEF maximal smoothing scale, use INEF for default(~image size)## User supplied scale map# sclmode = compute compute smoothing scales or user user-supplied mapsclmap = input file name (image of user-supplied map of smoothing scales)(stepzero = 0.01) initial stepsize by which smoothing scale increases## background method# (bkgmode = local) background treatment(bkgmap =) input file name (image of user-supplied background)(bkgerr =) input file name (image of user-supplied background error)## user specific comments# (clobber = yes) clobber existing output(verbose = 1) verbosity of processing comments(kernel = default) kernel of output format(mode = ql)unix: csmoothinput file name (raw image) (../acis_128_ext.fits):input file name (image of user-supplied map of smoothing scales) ():output file name (adaptively smoothed image) (cs_acis_128_ext.fits):output file name (image of the significance of the signal at eachlocation of the smoothed image) (.):output file name (image of the smoothing scales [kernel sizes] used ateach location of the image) (.):Convolution kernel type. (gauss|tophat) (gauss):Convolution method. (slide|fft) (fft):initial (minimal) smoothing scale in pixel, use INDEF for default(~1pixel) (INDEF):maximal smoothing scale, use INEF for default(~image size) ()sclmax)(INDEF):minimal significance (S/N ratio) of the signal under the kernel (4):maximal significance (S/N ratio) of the signal under the kernel()sigmin) (5):compute smoothing scales or user user-supplied map (compute|user)(compute):Message: edge treatment options will be ignored

6.2. Example 39smoothing out/in pixels counts significancen_max m_krnl_min radius diffl cumul done (%) done (%) rangemin med max---63.00 63.92 0.188 1.000 1.000 0.01 1.72 4.30 4.30 4.30...(etc).....3.00 170.57 13.477 1.000 1.000 22.63 58.58 4.00 4.15 4.722.00 204.53 14.631 1.000 1.000 25.25 61.15 4.00 4.30 5.012.00 199.12 15.315 1.000 1.000 26.42 62.43 4.00 4.14 4.54CSMOOTH: kernel cannot be larger than imagesetting kernel size to size of imageCSMOOTH: remainder will be smoothed on scale of 15.7365703.00 64.21 15.737 1.000 1.000 100.00 100.00 -14.90 0.54 4.75This run took 13 minutes on a SUN Ultra 1 and 37 minutes on a SparcStation5. The results are shownin �gure 6.2. This rendition can be compared with the constant kernel implementation of aconvolve, see�gure 2.2. (This is just an illustrative comparison since the pixel size of the HRC is smaller than that ofACIS.)The scale map is shown in �gure 6.3 and the signi�cance map is shown in �gure 6.4.

40 Chapter 6. Csmooth

Figure 6.2: The results of running csmooth on an ACIS simulation.

6.2. Example 41

Figure 6.3: This map shows the scale of the kernel used at each pixel location for the ACIS 128x128simulation. In the white areas, the scale is 14 to 16 pixels whereas in the darkest area the scale is theminimum value of 0.188 pixels.

42 Chapter 6. Csmooth

Figure 6.4: For each pixel in the smoothed map, this image shows the signi�cance. Darker areas are higher;the white areas are negative. Since csmooth is attempting to keep the signi�cance between 3 and 4, there isnot much contrast in the signi�cance map.

Part III
TCD Theory

43

Chapter 7
Theory
7.1 aconvolveASC Name: aconvolveDesription: Calculate the convolution of one-D or two-D arrays using Slide cell and Fourier transformmethods.Algorithm:In the following we give a simple example for a convolution of two 1-d arrays. We assume that the arraysware originally shifted from the origin by a and b, respectively, and have been shifted back.g(k) k=0,1,....,A-1h(k) k=0,1,....,B-1A and B are the number of samples in g and h, respectively.First pad with zeros to a size N>= A+B -1, (if running FFT on power of 2 size arrays then N=2 (where is an integer value) then chose the convolution method:� FFT Convolve� Slide Cell Convolve1. Slide Cell Convolve:To calculate the convolution using the Slide Cell method, calculate the following sum:45

46 Chapter 7. Theoryz(k) = N�1Xn=0 [g(n)h(k � n)] (7.1)2. FFT Convolve:To calculate the convolution using the FFT method:- Calculate the FFT of g and h: G(n) = NXk=0 g(k)e�j2�nk=N (7.2)
H(n) = NXk=0h(k)e�j2�nk=N (7.3)and then calculate: Z(n) = G(n)H(n) (7.4)-Finally, calculate the convolution by calculating the inverse FFT of Z(n):z(k) = N�1Xn=0 [N�1Z�(n)e�j2�nk=N (7.5)Note: (see e.g. Brigham 1974).7.2 CorrelationASC Name: acrosscorrDesription: Calculate the correlation of one-D or two-D arrays using Fourier transforms. (Special case -autocorrelation).Parameters:Algorithm:

7.3. Power Spectrum 47The correlation of two �nite-length functions g(x) and h(x) with a number of samples A and B, respectively,can be calculated as follows:- Assume that g and h are shifted from the origin by a and b, respectively, and are de�ned as follows:g(k)=0 k=0,1, N-Ag(k)=g(kT+a) k=N-A+1, N-A+2,..., N-1h(k)=h(kT+b) k=0,1,....,B-1h(x)=0 x=B,B+1,...., N-1where N is larger or equal to the sum of A+B-1 and N=2 (where is an integer value)- Calculate the discrete transforms of g and h:G(n) = NXk=0 g(k)e�j2�nk=N (7.6)
H(n) = NXk=0 h(x)e�j2�nk=N (7.7)- Change the sign in the imaginary part of H(n) to obtain H�(n) and then calculate:Z(n) = G(n)H�(n) (7.8)-Finally, calculate the correlation: z(k) = N�1Xk=0 [N�1Z�(n)e�j2�nk=N (7.9)Autocorrelation can be calculated using the same algorithm by replacing h with g.Note: (from E.Oran Brigham "The Fast Fourier Transform").7.3 Power SpectrumASC Name: apowerspectrum

48 Chapter 7. TheoryDesription: Calculate the powerspectrum of one-D or two-D arrays using Fourier transforms.Algorithm:The powerspectrum of a �nite-length function h(x) with a number of samples N can be calculated as follows:-Calculate the FFT of h(k)-Calculate the powerspectrum by taking the the modulus-squared of the fourier transform of h(k).-Normalize in a such a way that the the sum of the pixel values of the power spectrum is equal to the sumof the squares of the pixel values of the input image.7.4 TransformsASC Name: atransformFFTDescription:Calculate the Fast Fourier Transform of N-D dataset with respect to one or more axes.Algorithm:Use the IRAF STSDAS code by Phil Hodge. FFTPACK code obtained by Chris Biemesderfer from ArgonneNational Lab; math library over Arpanet (via netlib@argonne). Written at NCAR by Paul Swarztrauber inApr 85.OPTIONS:1. Forward FFT - computes the forward Fourier transform of an image;2. Inverse FFT - computes the inverse Fourier transform of an image.7.5 Csmooth: Adaptive Smoothing7.5.1 IntroductionThe ASMOOTH algorithm used in csmooth was conceived and developed by Harald Ebeling, David Whiteand Vijay Rangarajan. A detailed description of the algorithm and applications to X-ray imaging data canbe found in Ebeling H., White D.A., Rangarajan F.V.N. ASMOOTH: A simple and e�cient algorithm foradaptive kernel smoothing of two-dimensional imaging data, 2000, MNRAS, acceptedSmoothing of two-dimensional event distributions is a procedure routinely used in many �elds of data analysis.

7.5. Csmooth: Adaptive Smoothing 49In practice, smoothing is generally achieved by a convolutionI 0(~r) � I(~r)
K(~r) = ZIR2 K(~r � ~r 0) I(~r 0) d~r 0 (7.10)�ZIR2 K(~r) d~r 0 = 1�of the measured data I(~r) with a kernel function K (often also called `�lter' or `window function'). Althoughthe raw data may be an image in the term's common meaning [i.e. the data set can be represented as afunction I(x; y) where I is some intensity, and x and y are spatial coordinates], the two coordinates x andy can, in principle, describe any two-dimensional parameter space. The coordinates x and y are assumed totake only discrete values, i.e. the events are binned into (x; y) intervals. The only requirement on I that weshall assume in all of the following is that I is the result of a counting process in some detector, such thatI(x; y) 2 IN0.An image, as de�ned above, is a two-dimensional histogram and is thus often a coarse representation ofthe underlying probability density distribution (e.g. Merrit & Tremblay 1994, Vio et al. 1994). Althoughit is true that binned data contain less information than a discrete event distribution, there are also otherconsiderations. For certain experiments, an unbinned event distribution may not exist { for instance, if thex and y values correspond to discrete PHA (spectral energy) channels. Also, there are circumstances wheresome binning can be desirable for analysis purposes. For example, in cases where the dynamic range of thedata under consideration is large, the amount of data that need to be dealt with in the analysis can be reduceddrastically by replacing the raw event distribution with image pixels. If the bin size is su�ciently small, theunavoidable loss of spatial resolution may be a small price to be paid for a data array of manageable size.Smoothing of an observed, high-resolution image is of interest whenever the observed number of counts perresolution element of the instrumental set-up (in either x or y) approaches the expected background level.A practical criterion that tests for this condition is whether the signal (de�ned as the number of counts perpixel above the expected background) in the region of interest in x � y space is in the Poissonian regime,i.e. is less than, or of the order of, 10, after the raw event distribution has been sorted into intervals whosesize matches approximately the instrumental resolution. It is crucial in this context that the observed countstatistics are not taken at face value but are corrected for background: imagine a data set featuring a highbackground level. (This background may be internal, i.e. originating from the detector [more general: theinstrumental setup], or external.) In such a case the observed intensity (counts) distribution I(x; y) may behigh across the region of interest, suggesting good count statistics, although the signal above the backgroundthat we are interested in is actually very faint and poorly sampled. The statistics of the observed countsalone can thus be a poor indicator of the need for image smoothing.Rebinning the data set into larger, and thus fewer, intervals improves the count statistics per pixel andreduces the need for smoothing. This is also the basic idea behind smoothing with a kernel of the formK(~r 0; �) = � 1=(��2) where j~r 0j < �0 elsewhere (7.11)(circular `top-hat' or `box-car' �lter of radial size �), the only di�erence being that smoothing occurs semi-continuously (the step size being given by the bin size of the original data) whereas rebinning requiresan additional phase information [the o�set of the boundaries of the �rst bin with respect to some point ofreference such as the origin of the (x; y) coordinate system]. However, when starting from an image binned atabout the instrumental resolution, both rebinning and conventional smoothing share a well known drawback,namely that any improvement in the count statistics occurs at the expense of spatial resolution.Although conventional smoothing algorithms usually employ more sophisticated functional forms for thekernel than the above `top-hat' �lter (the most popular probably being a Gaussian), the problem remains

50 Chapter 7. Theorythat a kernel of �xed size is ill-suited for images that feature real structure on various scales, some of whichmay be much smaller or much larger than the kernel size. In such a situation, small-scale features tend toget over-smoothed while large-scale structure remains under-smoothed. Adaptive-kernel smoothing (AKS) isthe generic name for an approach developed to overcome this intrinsic limitation by allowing the kernel tovary over the image and adopt a position-dependent `natural' size.AKS is closely related to the problem of �nding the optimal adaptive kernel estimator of the probabilitydensity distribution underlying a measured, unbinned event distribution. The advantages of adaptive kernelestimators for the analysis of discrete, and in particular one-dimensional, astronomical data have beendiscussed by various authors (e.g. Thompson 1990, Pisani 1993, Merritt and Tremblay 1994, Vio et al. 1994).An overview of adaptive �ltering techniques in two dimensions is given by Lorenz et al. (1993).A common feature of all non-parametric adaptive kernel algorithms is that the `natural' smoothing scalefor any given position is determined from the number of counts accumulated in its immediate environment.Following the aforementioned principle, smoothing occurs over a large scale where few counts have beenrecorded, and over a small scale where count statistics are good. AKS algorithms di�er, however, in theprescription that de�nes how the amplitude of the local signal is to be translated into a smoothing scale.A criterion widely used for discrete data is that of Silverman (1986). It determines the size, �, of the localkernels relative to that of some global (i.e. non-adaptive, �xed) kernel (�const) by introducing a scaling factorwhich is the inverse square root of the ratio of the globally smoothed data to their logarithmic mean. Forimages, and using the same notation as before, this means�(~r) =s hI 0const(~r)ilogI 0const(~r) ; (7.12)where hI 0const(~r)ilog = dexhlog10 I 0const(~r)i, and I 0const(~r) represents the convolution of the measured datawith a kernel of �xed size �const. However, whether or not this approach yields satisfactory results dependsstrongly on the choice of the global smoothing scale �const (Vio et al. 1994). In the context of discretedata sets, Pisani (1993) suggested a least-squares cross-validation procedure to determine an optimal globalkernel size in an iterative loop. However, for binned data covering a large dynamical range, the dependenceof the result on the size of the global kernel becomes very sensitive indeed, and the iteration becomes verytime-consuming. Also the dependence on the somewhat arbitrary scaling law (eq. 7.12) remains. Otheradaptive �ltering techniques discussed recently in the literature include the hfilter algorithm for squareimages (Richter et al. 1991, see also Lorenz et al. 1993) and the akis algorithm of Huang & Sarazin (1996).7.5.2 Characteristics of AsmoothThe algorithm discussed in more detail in the following, asmooth, is an AKS algorithm for images, i.e.binned, two-dimensional datasets of any size, which determines the local smoothing scale from the require-ment that the signi�cance above the background of any signal enclosed by the kernel must exceed a certain,preset value. The algorithm is similar to akis (Huang & Sarazin 1996) in that it employs a signal-to-noise(s.n.r.) criterion to determine the smoothing scale. However, other than akis, asmooth does not requireany initial �xed-kernel smoothing but determines the size of the adaptive kernel directly and unambiguouslyfrom the unsmoothed input data. Asmooth also goes beyond existing AKS algorithms in that its s.n.r.criterion takes the background (instrumental or other) of the raw image into account. This leads to signif-icantly improved noise suppression in the case of large-scale features embedded in high background (whichmay be another real feature at even larger scale). Our approach yields smoothed images which feature anear-constant (or, alternatively, minimal) signal-to-noise ratio above the local background in all pixels. In

7.5. Csmooth: Adaptive Smoothing 51contrast to most other algorithms which require threshold values to be set (e.g., for the H coe�cients in thecase of the hfilter technique), asmooth is intrinsically non-parametric. The only external parameters thatneed to be speci�ed are the minimal and maximal signal-to-noise ratios (above the background) requiredunder the kernel.The simplicity of the determination of the local smoothing scale from the counts under the kernel andan estimate of the background (which can, but need not be speci�ed by the user) greatly facilitates thetranslation of the smoothing prescription into a simple and robust computer algorithm, and also allows astraightforward interpretation of the resulting smoothed image.7.5.3 Description of the algorithmAsmooth adjusts the smoothing scale such that, at every position in the image, the resulting smoothed datavalues share the same signal-to-noise ratio (s.n.r.) above the background; one may call this the `uniformsigni�cance' approach. The only external parameter required by asmooth is the desired minimal s.n.r.,�min. In order to ensure that statistically signi�cant structure is not over-smoothed to a level of signi�cancemuch higher than �min, a range of signal-to-noise ratios can be speci�ed as a pair of �min, �max values. Note,however, that the maximal signi�cance criterion is a soft one and, also, is applied only at scales larger thanthe instrumental resolution (which is assumed to be similar to the pixel scale); under no circumstances willasmooth blur pointlike features (pixels whose signi�cance in the unsmoothed image exceeds �min) in orderto bring their signi�cance down below the �max threshold. This implies also that, on the smallest scales,pixel-to-pixel variations (even insigni�cant ones) may still exist in the adaptively smoothed image. Besidesthe desired signi�cances �min, max, estimates of the background Ibkg and the associated background error�Ibkg are optional additional parameters.The background is, by default, measured in an annulus surrounding the smoothing kernel thus providing alocal estimate on the current smoothing scale. However, external background estimates (Ibkg and �Ibkg)can be supplied by the user. To allow background variations across the image to be taken into account,Ibkg and �Ibkg can be supplied as images of the same dimensions as the raw image; in the case of a atbackground Ibkg and �Ibkg reduce to global estimates of the background and background error per pixel,i.e., single numbers. Note, however, that features in the adaptively smoothed image will not necessarily belocally signi�cant at the speci�ed level if an external background estimate is provided.Internally, the threshold signi�cances �min, �max are translated into a minimal and a maximal integral numberof counts, Nmin, Nmax, to be covered by the kernel. More precisely, the criterion is thatNmin � I 0(~r)=K(~0; �(~r)) �< Nmax (7.13)where �(~r) is the characteristic, position-dependent scale of the respective kernel. Nmin,max in eq. 7.13 aredetermined from the de�nition of the minimal and maximal s.n.r. value �min,max,�min,max = Nmin,max �NbkgqNmin,max +�N2bkg ; (7.14)where, in analogy to the de�nition of Nmin,max (cf. eqs. 7.10,7.13), Nbkg and �Nbkg are the integral numberof background counts under the respective kernel and the associated error. From eq. 7.14 followsNmin,max = Nbkg + 12 �2min,max+ �min,maxrNbkg +�N2bkg + 14 �2min,max: (7.15)

52 Chapter 7. TheoryFor an adaptive circular top-hat kernel of size �(~r) (cf. eq. 7.11), eq. 7.13 translates into Nmin �� �(~r)2 I 0(~r) � Nmax, and the interpretation is straightforward: at least Nmin, but no more than Nmax,counts are required to lie within the area � �(~r)2 that the smoothing occurs over. In the case of a uniformbackground, the value of Nbkg in eq. 7.15 is simply given by nbkg� �(~r)2 where nbkg is the global backgroundlevel per pixel in the input image.For any given pair of (Nmin; Nmax) values, a Gaussian kernelK(~r � ~r 0; �(~r)) = 12� �(~r)2 exp��j~r � ~r 0 j22�(~r)2 � (7.16)will yield considerably larger e�ective smoothing scales than a top-hat, as, in two dimensions, more than 60per cent of the integral weight fall outside a 1� radius, whereas, in the case of a circular top-hat kernel, allof Nmin needs to be accumulated within a 1� radius. (Note that, according to Eq. 7.16, it is the weightsper unit area that follow a Gaussian distribution. The weights per radial annulus do not, which is why, forthe kernel de�ned in Eq. 7.16, the fraction of the integral weight that falls outside the 1� radius is muchlarger than the 32 per cent found for a one-dimensional Gaussian.) Which kernel to use is up to the user:asmooth o�ers a choice of Gaussian and circular top-hat but any other, user-de�ned kernel can be speci�edas an optional argument in the function call.The algorithm is coded such that the adaptively smoothed image is accumulated in discrete steps as thesmoothing scale increases gradually, i.e.I 0AKS(~r) =Xi I 0i(~r) =Xi Ii(~r)
K(~r; �i) ; (7.17)where �i starts from an initial value �0 which is matched to the intrinsic resolution of the raw image (i.e.,the pixel size), and Ii(~r) is given byIi(~r) = 8<: I(~r) where Nmin � I 0(~r)=K(~0; �i) � Nmaxand I(~r) 62 Ij(~r); j < i0 elsewhere. (7.18)The adaptively smoothed image is thus accumulated in a \top-down" fashion with respect to the observedintensities as asmooth starts at small kernel sizes to smooth the vicinity of the brightest pixels, and thenincreases the kernel size until, eventually, only background pixels contribute. Note that condition 7.18ensures that pixels found to contain signi�cant signal at a scale �i will not contribute to the image layersI 0j ; (j > i) subsequently produced with smoothing scales �j > �i. Consequently, each feature is smoothedat the smallest scale at which it reaches the required signi�cance (see eq. 7.13), and low-s.n.r. regions aresmoothed at an appropriately large scale even in the immediate vicinity of image areas with very high s.n.r.In order to take full advantage of the resolution of the unbinned image, the size �0 of the smallest kernel ischosen such that the area enclosed by K(~r; �0) is about one pixel. For the circular top-hat �lter of eq. 7.11this means �0 = 1=p�; for the Gaussian kernel of eq. 7.16 we have �0 = 1=p9�. Subsequent values of�i (i > 0) are determined from the requirement that eq. 7.13 be true. If a near-constant s.n.r. value is aimedat with high accuracy, i.e., if a �max value very close to �min is chosen, the smoothing scale �i will grow invery small increments, and the smoothing will proceed only slowly. In all our applications we found values of�max �> 1:1� �min to yield a good compromise between CPU time considerations and a su�ciently constantsignal-to-noise ratio of the smoothed image.While the intrinsic resolution of the raw image (i.e. the pixel size) determines the smallest kernel size �0, thesize of the image as a whole represents an upper limit to the size of the kernel. Although the convolution canbe carried out until the numerical array representing the kernel is as large as the image itself, this process

7.5. Csmooth: Adaptive Smoothing 53becomes very CPU time intensive as �i increases. Once the smoothing scale has exceeded that of the largeststructure in the image, the criterion of eq. 7.13 can never be met as only background pixels contribute. Sincethe only features left unsmoothed at this stage are insigni�cant background uctuations, the algorithm thensmoothes the remaining pixels with the largest possible kernel. Unavoidably, the signal-to-noise ratio ofthese last background pixels to be smoothed does not meet the condition of eq. 7.13.In order to allow the convolution to be performed over the whole image for any kernel size up to the sizeof the image itself, boundary conditions have to be speci�ed. Of the three main possibilities truncation(also commonly referred to as padding), duplication, and wrapping, we found padding with zeroes to bethe only feasible option if, �rstly, the total number of counts in the unsmoothed image is to be preservedand, secondly, the creation of spurious structure at the �eld edges is to be avoided. (Duplication, wherethe values at the edges of the data array are repeated outside the image boundaries, does not always meetthe �rst criterion due to problems at the corners of the image; wrapping can violate the second criterionif the image intensities do not fall o� to some uniform background value at the �eld edges.) We ensurethat the zero-padded regions outside the actual image do not a�ect the convolution result by dynamicallyrenormalizing the kernel to the area inside the image boundaries.The smoothed image obtained from the above procedure strictly conserves total counts (within the limitationsset by the computational accuracy) and provides a fair representation of the original data at all positions.

54 Chapter 7. Theory

Part IV
TCD Reference Manual

55

Chapter 8
TCD Tools: Input Parameters & DataProducts
In this chapter we give a detailed account for each task in the TCD suite. We give the parameter �le, adescription of each parameter, and a discussion of the data products.NB: The term `Required' indicates that the user must provide a value for the indicated parameter beforethe program will run; i.e. the default parameter �le does not contain a valid value.8.1 aconvolve8.1.1 aconvolve: input parameter �le - with default values## aconvolve.par file## infile = Input IMAGE file namekernelspec = Kernel specificationoutfile = Output IMAGE file name## auxiliary outputs# (writekernel = no) Output kernel(kernelfile = ./.) Output kernel file name(writefft = no) Write fft outputs(fftroot = ./.) Root name for FFT files# 57

58 Chapter 8. TCD Tools: Input Parameters & Data Products# processing parameters# (method = slide) Convolution method(edges = wrap) Edge treatment(const = 0) Constant value to use at edges with edges=constant(pad = no) Pad data axes to next power of 2^n(center = no) Center FFT output## user specific comments# (clobber = yes) Clobber existing output(verbose = 0) Debug level(kernel = default) Output format kernel(mode = ql)8.1.2 aconvolve: Input Parameter DescriptioncenterOptionalData Type: booleanDefault: noAllowed range: yes, noCenter FFT output. This parameter is currently inoperative.clobberOptionalData Type: booleanDefault: yesAllowed range: yes, noClobber existing output.constOptionalData Type: realDefault: 0Constant value to use when edges=constant (see edges parameter).edgesOptionalData Type: stringDefault: wrapAllowed range: wrap, nearest, mirror, constant, renormAs the kernel moves across the data, the edge of the kernel may fall o� the data space. When thishappens the program needs to know how the user wants to handle the edges. Five methods for handlingthe edges are implemented: For the 5 cases described below, consider the following example data space:data = f 1, 2, 3 g.

8.1. aconvolve 59edges = wrapWhen the kernel runs o� the data space, it is wrapped around the data. Thus the data goesf...1,2,3,1,2,3,1,2,3...gedges = nearestWhen the kernel runs o� the data space, extrapolate the data nearest to the edge, eg data goesf...1,1,1,2,3,3,3,3,3...gedges = mirrorWhen the kernel runs o� the data space, reect the data nearest the edge, eg data goesf...3,2,1,1,2,3,3,2,1...gedges = constantWhen the kernel runs o� the data space, use the constant supplied by the const parameter (egconst=0), so data goes f ...0,0,1,2,3,0,0,..gedges = renormWhen the kernel runs o� the data space, use a constant = 0 at the edge; however, re-normalizethe kernel by the amount of area that remains on the data space.Implicitly, using the FFT method of convolution implies wrapping edge treatment.�trootOptionalData Type: stringDefault: ./.root �le name for FFT output �lesin�leRequiredData Type: stringDefault: ""The input is an image. The input image can have any number of dimensions.The input can have the following data types: "short" (BITPIX=16), "long" (BITPIX=32), "oat"(BITPIX=-32), and "double" (BITPIX=-64).The image can be a virtual image as de�ned by the datamodel. Thus one could specify a virtual imageby using the "bin" syntax likemy_file.fits[EVENTS][bin x=1:100:1, y=1:100:1]To specify a 2D image binned on X and Y columns in EVENTS extension of my file.fits �le.kernelOptionalData Type: stringDefault: defaultAllowed range: fits, iraf, defaultThe output format is controlled by the kernel parameter. The output will either be a FITS image(kernel=fits), an IRAF .imh/.pix �le (kernel=iraf), or will default to whatever format the inputis in (kernel=default).

60 Chapter 8. TCD Tools: Input Parameters & Data Productskernel�leOptionalData Type: stringDefault: ./.�le name for kernel imagekernelspecRequiredData Type: stringDefault: ""The examples show the syntax of the 3 kernelspec speci�cations that are available. The genericsyntax of the kernelspec speci�cation is:<key>:<parameters>:<origin>The required `key' part of the speci�cation (3 choices):<key> = fileThis tells the program to read the kernel from the image stored in the �le <parameters>. Theformat of the speci�ed �le can be a FITS image or any of the data types speci�ed for the inputimage. For example,kernelspec="file:/tmp/foo.fits"<key> = txtThis tells the program to parse the string <parameters> to create the kernel. For example(example of a 2D kernel),kernelspec="txt:((1,1,1),(1,1,1),(1,1,1)):(1,1)"<key> = libThis tells the program to parse the string <parameters> for two things a) which library and b)parameters needed for that library call. The parameters needed follow the library speci�cation in"()"'s, for example,kernelspec="lib:box(2,1,3,3):(1,1)"Currently supported libraries are:box - an N-D array with constant valueThe parameters are (D, N, D1, D2,...DD) whereD = number of dimensionsN = normalization (constant value)D1 - DD = length of box in each dimension.Example: box(2,1,3,3) = 3x3 box with unit (1) amplitude.gaus - an N-D non-rotated Gaussian. `non-rotated' means you can specify a size for each axisseparately, but not an angle for the major axis.The parameters are (D, M, N, S1, S2, ... SD) whereD = number of dimensionsM = number of sigma to extend in each directionN = normalizationS1-SD = sigmas in each directionExample: gaus(2,5,1,2,3) = an elliptical 2-D Gaussian with unit (1) amplitude that ex-tends out to 5 sigma in each direction. The sigma along the �rst axis = 2, in the 2nd =3.

8.1. aconvolve 61tophat - a 2D non-rotated elliptical top hat function.The parameters are (D, N, D1, D2) whereD = number of dimension (ONLY = 2)!N = normalization (what value)D1 D2 = radii of ellipse axes along 1st and 2nd axes.Example: tophat(2,1,3,3) = a unit high circular top hot that has a radius = 3 pixels.The optional `origin' part of the speci�cation for kernelspecThe origin speci�cation allows the user to specify the origin of the kernel within the kernal arrayused in the convolution. By `origin' we mean the center (of a function like the tophat), or peakvalue (of a function such as a Gaussian). Typically 2D kernels have the origin in the \center" ofthe array. Many 1D kernels have the origin as the �rst element in the array.To make the tool as generic as possible, the user is allowed to explicitly specify where the originis. This alleviates some common restrictions that other tools may have (i.e. length of data axesmust be an odd number).If no origin is speci�ed, the default is to assign the origin to the center of the array (roundeddown). Thus a (5,4) array will have its origin set at (2,2).methodOptionalData Type: stringDefault: slideAllowed range: slide, fftTwo convolution methods are implemented. Under some simple constraints they will provide the exactsame answers.method=slideSliding cell convolution is a convolution from �rst principles.method=�tThe FFT of the data and the kernel is computed. The arrays are multiplied and the inverse FFTis taken.a) Internally the kernel and data MUST be the same size. The program will pad either/or boththe data and/or kernel to the maximum length along either axis.If the edges of the data are "wrapped" (see edges parameter) then the FFT and slide methods willyield the same results.For moderately-large to large kernels, the FFT convolution is much faster (O(N log N) as opposed toO(N2)), however a) it requires much more memory and b) it restricts the edge treatment to "wrap".out�leRequiredData Type: stringDefault: ""output image �le nameThe output �le is an image. The output image has the same dimensions as the input image. Theoutput data type is always "oat" (BITPIX=-32).The output format is controlled by the kernel parameter.Note: To completely specify the �le name one should include the extension name:myfile.fits[foo] { for �ts or ./[blah] { for iraf

62 Chapter 8. TCD Tools: Input Parameters & Data ProductsNot specifying the �le block, (i.e. the part in []'s) may results in some odd name conventions (especiallyfor the iraf kernel).Note: If the output �lename is "." or "path/." (where path is some directory path), then the output�le will automatically be named by deriving a root from infile.pad OptionalData Type: booleanDefault: noAllowed range: yes, nopad data array to length = 2N .The user can specify that the data be padded such that the length of each data axes is promoted to thenext integer power of 2. The data are always padded on the "right" hand side, thus the array 1,2,3,4,5would be padded to 1,2,3,4,5,0,0,0. This way of padding results in no change in the origin.verboseOptionalData Type: integerDefault: 0Allowed range: 0-5Debugging information is provided at various steps thru the program. The verbosity of the debuggingmessages is controlled by the verbose parameter.Debug Output0 Nothing (quite)1 echo back parameters2 report when entering/exiting routines3 report size of data arrays4 report kernel building steps5 verbosewrite�tOptionalData Type: booleanDefault: noAllowed range: yes, nooutput FFT of data and kernel (i� method=�t). The choice indicated by writekernel has no e�ecton writefft. The coordinates of the FFT output will be improved at a later time.writekernelOptionalData Type: booleanDefault: noAllowed range: yes, nooutput kernel to an image. If writefft is set to `yes', then the �t of the kernel will be output to realand imaginary �les regardless of the value of writekernel.

8.2. acrosscorr 638.1.3 aconvolve: Data Products DescriptionimageThe output �le is an image. The output image has the same dimensions as the input image. Theoutput data type is always "oat" (BITPIX=-32).The output format is controlled by the kernel parameter.8.2 acrosscorr8.2.1 acrosscorr: input parameter �le - with default valuesinfile1 = Input file name #1infile2 = Input file name #2. Use none for autocorrelateoutfile = Output file name(crop = no) Crop output to size of infile1(pad = no) Pad data to size of infile1 + infile2(center = no) Center output(clobber = yes) Clobber existing output file(verbose = 0) Debug level(kernel = default) Output format kernel(mode = ql)8.2.2 acrosscorr: Input Parameter DescriptioncenterOptionalData Type: booleanDefault: noAllowed range: yes, nocenter outputIf center=yes, the zero-o�set point will be in the center of the output data array, otherwise, it will beat the 0 pixel location.clobberOptionalData Type: booleanDefault: yesAllowed range: yes, noremove output �le if it existscrop OptionalData Type: boolean

64 Chapter 8. TCD Tools: Input Parameters & Data ProductsDefault: noAllowed range: yes, nocrop output to size of 1st imageIf crop=yes, the output is cropped to the size of infile1.in�le1RequiredData Type: stringDefault: ""input �lename for 1st imageThe input is a FITS image or IRAF .imh image �le. The input can have the following data types:"short" (BITPIX=16), "long" (BITPIX=32), "oat" (BITPIX=-32), and "double" (BITPIX=-64).Complex inputs are not currently supported.Alternatively a FITS binary table can be binned using the datamodel syntax to specify the image (seeexample below).If infile2 is "NONE", then the autocorrelation of the infile1 is computed.in�le2RequiredData Type: stringDefault: ""input �lename for 2nd imageThe input is a FITS image or IRAF .imh image �le. The input can have the following data types:"short" (BITPIX=16), "long" (BITPIX=32), "oat" (BITPIX=-32), and "double" (BITPIX=-64).Complex inputs are not currently supported.Alternatively a FITS binary table can be binned using the datamodel syntax to specify the image (seeexample below).If infile2 is "NONE", then the autocorrelation of the infile1 is computed.kernelOptionalData Type: stringDefault: defaultAllowed range: fits, iraf, defaultoutput formatThe output format is controlled by the kernel parameter. The output will either be a FITS image(kernel=fits), an IRAF .imh/.pix �le (kernel=iraf), or will default to whatever format the inputis in (kernel=default).out�leRequiredData Type: stringDefault: ""output image �le nameThe output image is an image of type FLOAT (32bit IEEE oating point number).The center, pad, and crop parameters determine the output size.By default, the output image is the maximum size in each direction from both input �les. Thus ifinfile1 is 5x2 and infile2 is 3x3, the output will be 5x3.

8.2. acrosscorr 65The output format is controlled by the kernel parameter.Note: To completely specify the �le name one should specify something the �le and extension namelike:myfile.fits[foo] { for �ts or ./[blah] { for irafNot specifying the �lename with the block speci�ed, ie the part in []'s may results in some add nameconventions (especially for the iraf kernel).Note: If the output �lenames are "." or "path/." (where path is some directory path), then the output�les will automatically be named by deriving a root from the infilereal and adding a "real" and"imag" su�x.pad OptionalData Type: booleanDefault: noAllowed range: yes, nopad data to size of image1+image2If pad=yes, the data is padded to the size of infile1 + infile2, so in the example above the outputwould be 8x5.Padding is done before the correlation is performed. Cropping is done after, so if both are set to "yes",the �nal output will be cropped.verboseOptionalData Type: integerDefault: 0Allowed range: 0-5processing verbosity8.2.3 acrosscorr: Data Products Descriptionimage The output image is an image of type FLOAT (32bit IEEE oating point number).The center, pad, and crop parameters determine the output size.By default, the output image is the maximum size in each direction from both input �les. Thus ifinfile1 is 5x2 and infile2 is 3x3, the output will be 5x3.If crop = yes, the output is cropped to the size of infile1.If pad = yes, the data is padded to the size of infile1 + infile2, so in the example above the outputwould be 8x5.Padding is done before the correlation is performed. Cropping is done after, so if both are set to "yes",the �nal output will be cropped.If center=yes, the zero-o�set point will be in the center of the output data array, otherwise, it will beat the 0 pixel location.The output format is controlled by the kernel parameter. The output will either be a FITS image(kernel=�ts), an IRAF .imh/.pix �le (kernel=iraf), or will default to whatever format the input isin (kernel=default).

66 Chapter 8. TCD Tools: Input Parameters & Data ProductsNote: To completely specify the �le name one should specify something the �le and extension namelike:my�le.�ts[foo] { for �ts or ./[blah] { for irafNot specifying the �lename with the block speci�ed, ie the part in []'s may results in some add nameconventions (especially for the iraf kernel).Note: If the output �lenames are "." or "path/." (where path is some directory path), then the output�les will automatically be named by deriving a root from the in�lereal and adding a "real" and "imag"su�x.
8.3 apowerspectrum8.3.1 apowerspectrum: input parameter �le - with default values## apowerspectrum tool## inputs# infilereal = Input file name for real partinfileimag = Input file name for imaginary part## output# outfile = File name for output## processing# (pad = no) Pad data array to next power of 2(center = no) Center 0 frequency at center of array(scale = linear) Output scale(crop = no) Crop output at Nyquist frequency## user# (clobber = yes) Delete existing output(verbose = 0) Debug level(kernel = default) Output format kernel## mode# (mode = ql)

8.3. apowerspectrum 678.3.2 apowerspectrum: Input Parameter DescriptioncenterOptionalDate Type: booleanDefault: noAllowed range: yes, nocenter dataThe center parameter controls whether the zero frequency point is at pixel=0 or pixel=N/2.Note: both center and crop cannot be set to "yes".clobberOptionalDate Type: booleanDefault: yesAllowed range: yes, noclobber output �le if it existscrop OptionalDate Type: booleanDefault: noAllowed range: yes, nocrop output N/2The crop parameter controls whether the entire powerspectrum is output or just up to the Nyquistfrequency (N/2).Note: both center and crop cannot be set to "yes".in�leimagRequiredDate Type: stringDefault: ""input image for imaginary part of dataThe input is an image. The input image can have any number of dimensions.The input can have the following data type: "byte" (BITPIX=8), "short" (BITPIX=16), "long"(BITPIX=32), "oat" (BITPIX=-32), and "double" (BITPIX=-64).The real and imaginary parts of the input are input separately. If there is no real or imaginary part,then set the �le name to "none" or "NONE".(TBR) Currently, there MUST be a real part to the data. The imaginary part can be "none".If pad is set to yes, the data is padded in size to the next power of 2 in all dimensions.The image can be a virtual image as de�ned by the datamodel. Thus one could specify a virtual imageby using the "bin" syntax likemy file.fits[EVENTS][bin x=1:100:1, y=1:100:1]To specify a 2D image binned on X and Y columns in EVENTS extension of my �le.�ts �le.

68 Chapter 8. TCD Tools: Input Parameters & Data Productsin�lerealRequiredDate Type: stringDefault: ""input image for real part of dataThe input is an image. The input image can have any number of dimensions.The input can have the following data type: "byte" (BITPIX=8), "short" (BITPIX=16), "long"(BITPIX=32), "oat" (BITPIX=-32), and "double" (BITPIX=-64).The real and imaginary parts of the input are input separately. If there is no real or imaginary part,then set the �le name to "none" or "NONE".(TBR) Currently, there MUST be a real part to the data. The imaginary part can be "none".If pad is set to yes, the data is padded in size to the next power of 2 in all dimensions.The image can be a virtual image as de�ned by the datamodel. Thus one could specify a virtual imageby using the "bin" syntax likemy file.fits[EVENTS][bin x=1:100:1, y=1:100:1]To specify a 2D image binned on X and Y columns in EVENTS extension of my �le.�ts �le.kernelOptionalDate Type: stringDefault: defaultAllowed range: fits, iraf, defaultoutput format kernelThe output format is controlled by the kernel parameter. The output will either be a FITS image(kernel=fits), an IRAF .imh/.pix �le (kernel=iraf), or will default to whatever format the inputis in (kernel=default).out�leRequiredDate Type: stringDefault: ""output �le nameThe output data �le is a "oat" image with the power spectrum computed.The output format is controlled by the kernel parameter.Note: To completely specify the �le name one should specify something the �le and extension namelike:myfile.fits[foo] { for �ts or ./[blah] { for irafNot specifying the �lename with the block speci�ed, ie the part in []'s may results in some add nameconventions (especially for the iraf kernel).Note: If the output �lenames are "." or "path/." (where path is some directory path), then the output�les will automatically be named by deriving a root from the infilereal and adding a "real" and"imag" su�x.

8.4. atransform 69pad OptionalDate Type: booleanDefault: noAllowed range: yes, nopad data to next power of 2If pad is set to yes, the data is padded in size to the next power of 2 in all dimensions.scaleOptionalDate Type: stringDefault: linearAllowed range: linear, log, dbscale data byThe output is scaled according to the scale parameter.The scale parameter can take the following values.linear linear scaling: output = |FFT(a)|^2log log (base 10) scaling: output = log(|FFT(a)|^2)db 10 * log() scaling: output = 10*log(|FFT(a)|^2)Note: For scale=log and scale=db, IEEE NaN's may be generated in the output �les, log(0) = NaN.verboseOptionalDate Type: integerDefault: 0Allowed range: 0-5processing info verbosityDebugging information is provided at various steps thru the program. The verbosity of the debugmessages is controlled by the verbose parameter.8.3.3 apowerspectrum: Data Products Descriptionimage The output data �le is a "oat" image with the power spectrum computed.The output is scaled according to the scale parameter.The output format is controlled by the kernel parameter.8.4 atransform8.4.1 atransform: input parameter �le - with default values

70 Chapter 8. TCD Tools: Input Parameters & Data Products## atransform.par file## inputsinfilereal = Input file name for real partinfileimag = none Input file name for imaginary part## outputs# outfilereal = File name for real part of outputoutfileimag = File name for imaginary part of output## processing parameters# transform = fft Transform typedirection = forward Transform direction(pad = no) Pad data array to next power of 2(center = no) Center 0 frequency at center of array## user preferences# (clobber = yes) Delete existing output(verbose = 0) Debug level(kernel = default) Output format kernel## mode# (mode = ql)8.4.2 atransform: Input Parameter DescriptioncenterOptionalDate Type: booleanDefault: noAllowed range: yes, nocenter output so DC is in middleThe center parameter controls whether the zero frequency point is at pixel=0 or pixel=N/2.clobberOptionalDate Type: booleanDefault: yesAllowed range: yes, noclobber output �le if it existsdirectionRequired

8.4. atransform 71Date Type: stringDefault: forwardAllowed range: forward, reversedirection of transformin�leimagRequiredDate Type: stringDefault: noneinput image for imaginary part of dataThe input is a FITS image (possibly IRAF .imh �le). The input image can have any number ofdimensions.The input can have the following data type: "byte" (BITPIX=8), "short" (BITPIX=16), "long"(BITPIX=32), "oat" (BITPIX=-32), and "double" (BITPIX=-64).The real and imaginary parts of the input are input separately. If there is no real or imaginary part,then set the �le name to "none" or "NONE".(TBR) Currently, there MUST be a real part to the data. The imaginary part can be "none".The image can be a virtual image as de�ned by the datamodel. Thus one could specify a virtual imageby using the "bin" syntax like my �le.�ts[EVENTS][bin x=1:100:1, y=1:100:1] To specify a 2D imagebinned on X and Y columns in EVENTS extension of my �le.�ts �le.in�lerealRequiredDate Type: stringDefault: ""input image for real part of dataThe input is a FITS image (possibly IRAF .imh �le). The input image can have any number ofdimensions.The input can have the following data type: "byte" (BITPIX=8), "short" (BITPIX=16), "long"(BITPIX=32), "oat" (BITPIX=-32), and "double" (BITPIX=-64).The real and imaginary parts of the input are input separately. If there is no real or imaginary part,then set the �le name to "none" or "NONE".(TBR) Currently, there MUST be a real part to the data. The imaginary part can be "none".The image can be a virtual image as de�ned by the datamodel. Thus one could specify a virtual imageby using the "bin" syntax like my �le.�ts[EVENTS][bin x=1:100:1, y=1:100:1] To specify a 2D imagebinned on X and Y columns in EVENTS extension of my �le.�ts �le.kernelOptionalDate Type: stringDefault: defaultAllowed range: fits, iraf, defaultoutput formatThe output format is controlled by the kernel parameter. The output will either be a FITS image(kernel=fits), an IRAF .imh/.pix �le (kernel=iraf), or will default to whatever format the inputis in (kernel=default).

72 Chapter 8. TCD Tools: Input Parameters & Data Productsout�leimagRequiredDate Type: stringDefault: ""output �le name for imaginary part of dataTwo output data �les are produced.The data type is always "oat" (BITPIX=-32). There is one �le for the real part of the transform andone for the imaginary part of the transform.The center parameter controls whether the zero frequency point is at pixel=0 or pixel=N/2.The output format is controlled by the kernel parameter.out�lerealRequiredDate Type: stringDefault: ""output �le name for real part of dataTwo output data �les are produced.The data type is always "oat" (BITPIX=-32). There is one �le for the real part of the transform andone for the imaginary part of the transform.The center parameter controls whether the zero frequency point is at pixel=0 or pixel=N/2.The output format is controlled by the kernel parameter.pad OptionalDate Type: booleanDefault: noAllowed range: yes, nopad data to next power of 2The user can specify that the data be padded such that the length of each data axes is promoted to thenext integer power of 2. The data is always padded on the "right" hand side, thus the array 1,2,3,4,5would be padded to 1,2,3,4,5,0,0,0.transformRequiredDate Type: stringDefault: fftAllowed range: ffttype of transform to performThe available transforms are listed below:transform=�tCompute the discrete Fourier Transform of the data using an FFT algorithm. The FFT algorithmwas adapted from the STSDAS FFT routine: converted from FORTRAN to C and made to workin multiple dimensions. By standard convention, in the forward direction the sign of the complexexponential is negative and in the reverse direction the sign of the complex exponential is positive.In the forward direction, the data is normalized by the area of the data.

8.5. csmooth 73verboseOptionalDate Type: integerDefault: 0Allowed range: 0-5processing info verbosityDebugging information is provided at various steps thru the program. The verbosity of the debugmessages is controlled by the verbose parameter.8.4.3 atransform: Data Products DescriptionTwo output data �les are produced.The data type is always "oat" (BITPIX=-32). There is one �le for the real part of the transform andone for the imaginary part of the transform.The output format is controlled by the kernel parameter.8.5 csmooth8.5.1 csmooth: input parameter �le - with default values
csmooth.par file## infile = input file name (raw image)outfile = output file name (adaptively# smoothed image)outsigfile = . output file name (image of the# significance of the signal at each location of the smoothed image)outsclfile = . output file name (image of the# smoothing scales [kernel sizes] used at each location of the image)## processing parameters# conmeth = fft Convolution method.conkerneltype = gauss Convolution kernel type.## Signifigance numbers# sigmin = 4 minimal significance (S/N ratio) of# the signal under the kernel

74 Chapter 8. TCD Tools: Input Parameters & Data Productssigmax = 5 maximal significance (S/N ratio) of# the signal under the kernel## Scales# sclmin = INDEF initial (minimal) smoothing scale in# pixel, use INDEF for default (~1pixel)sclmax = INDEF maximal smoothing scale, use INEF# for default(~image size)## User supplied scale map# sclmode = compute compute smoothing scales or user# user-supplied mapsclmap = input file name (image of# user-supplied map of smoothing scales)(stepzero = 0.01) initial stepsize by which smoothing# scale increases## background method# (bkgmode = local) background treatment(bkgmap =) input file name (image of# user-supplied background)(bkgerr =) input file name (image of# user-supplied background error)## user specific comments# (clobber = yes) clobber existing output(verbose = 1) verbosity of processing comments(kernel = default) kernel of output format(mode = ql)
8.5.2 csmooth: Input Parameter DescriptionbkgerrOptionalData Type: stringDefault: ``''The input �le name of a user-supplied background error map.bkgmapOptionalData Type: string

8.5. csmooth 75Default: ``''The name of a user supplied background map.bkgmodeOptionalData Type: stringDefault: localAllowed range: local, userThe parameter which selects how the background is to be computed. If set to 'local', the data sur-rounding the kernel will be used. If set to 'user', then bkgmap, bkgerr must contain the names of �lescontaining a user supplied background map and a background error map.clobberOptionalData Type: booleanDefault: yesAllowed range: yes, noClobber existing outputconkerneltypeData Type: stringDefault: gaussAllowed range: gauss, tophatConvolution kernel type.conmethData Type: stringDefault: fftAllowed range: slide, fftThe convolution method. If the original 'Asmooth' algorithm is desired, choose 'slide'.in�leRequiredData Type: stringDefault: ""Input IMAGE �le namekernelOptionalData Type: stringDefault: defaultAllowed range: fits, iraf, defaultOutput format kernelout�leRequiredData Type: stringOutput smoothed image �le name

76 Chapter 8. TCD Tools: Input Parameters & Data Productsoutscl�leData Type: stringDefault: .Output �le name of an image, where each pixel has the value of the scale used at that location.outsig�leData Type: stringDefault: .Output �le name of an image, where each pixel has the value of the signi�cance (sigma) at that location.sclmapOptionalData Type: stringDefault: ``''If sclmode=user, then a map must be supplied by the user such that each pixel has the value of thescale to use at that location.sclmodeOptionalData Type: stringDefault: compute Allowed range: compute, usersclmode controls whether csmooth computes all smoothing scales internally based on the speci�edsigni�cance threshold (the default), or whether the smoothing scales are to be taken from a user-supplied map.If a map of prede�ned smoothing scales is supplied by the user (through the sclmap parameter), thevalues of the parameters sigmin, sigmax, sclmin, sclmax, and stepzero are ignored, and any featuresin the smoothed output image will, in general, not be signi�cant at any uniform level.sclmaxData Type: realDefault: INDEFsclmax is the maximum scale size allowed (in pixels). The default value (INDEF) will allow the scaleincrease so as to obtain a signi�cance within the range speci�ed by sigmin, sigmax, which oftenmeans that the largest scale approaches the size of the map.sclminRequiredData Type: realDefault: INDEFsclmin is the minimum scale size to use, in pixels. The default value (INDEF) will cause the programto compute the minimum scale, which will often be of order one pixel (depending on the signi�cancelevel).sigmaxData Type: realDefault: 5sigmax de�nes the upper boundary of signi�cance of the (background corrected) signal under the kernelused in selecting scale sizes.

8.5. csmooth 77sigminData Type: realDefault: 4sigmin de�nes the lower boundary of signi�cance of the (background corrected) signal under the kernelused in selecting scale sizes.stepzeroData Type: realDefault: 0.01stepzero is the initial step size for increasing the scale of the convolution kernel.verboseOptionalData Type: integerDefault: 0Allowed range: 0-5Debug level8.5.3 csmooth: Data Products Descriptionout�le The output map is the adaptively smoothed version of the data. The output �le is an image ofthe same dimensions as the input image. The output data type is always \oat" (BITPIX=-32). Theoutput format is controlled by the kernel parameter.outsig�le This is a map of the signi�cance of the signal in each pixel of the smoothed image. The signi�canceis computed using Gaussian statistics and taking into account the expectation value of the backgroundin the kernel area. If not supplied by the user, the background expectation is computed from a localestimate obtained from the counts in an annulus surrounding the kernel.outscl�le An image of the smoothing scales (kernel sizes) used at each location of the smoothed image.The smoothing scales are the smallest that allow the signi�cance threshold to be reached. The scalesare the sizes of the smoothing kernel used at any location of the image: standard deviation in the caseof a Gaussian kernel, radius in the case of a tophat kernel.

78 BIBLIOGRAPHY

REFERENCES
R. Bracewell \The Fourier Transform and Its Applications", 2nd Ed.; McGraw-Hill, Inc.; 1985.Brigham, E.Oran \The Fast Fourier Transform", 1974, Prentice-Hall, IncEbeling H., White D.A., Rangarajan F.V.N. \ASMOOTH: A simple and e�cient algorithm for adaptivekernel smoothing of two-dimensional imaging data", 2000, MNRAS, submitted.

79

