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1 Introduction

The Chandra X-ray Observatory, launched in July 1999, provides X-ray imaging and spectral data

of unprecedented resolution. The geometry of Chandra's detectors is more complicated than those

of previous missions; this, coupled with the higher accuracy requirements, means that more care

must be taken to derive accurate coordinates and to distinguish clearly between di�erent coordinate

systems.

In the �rst two papers in this series we discussed calculation of image space coordinates. In the

present note, we consider interpretation of grating data.

1.1 Chandra gratings

The Chandra X-ray Observatory has two transmission gratings, the HETG (High Energy Transmis-

sion Grating) and the LETG (Low Energy Transmission Grating). Each of these is physically a large

circular structure consisting of four annuli matched to the radii of the four HRMA (High Resolution

Mirror Array) mirror pairs. Around the annuli are mounted hundreds of individual grating facets.

The grating structures are attached to the back of the HRMA with hinges so that either of them may

be rotated around to intercept the rays emerging from the mirrors. The LETG facets, collectively

the LEG (Low Energy Grating), have a period of around 9900

�

A and are aligned so that the light

is dispersed along the telescope FCY (paper I) axis, perpendicular to the direction of optical bench

motion and aligned with the long direction of the HRC-S and ACIS-S detectors. The HETG has

two sets of facets, known as HEG (High Energy Grating) and MEG (Medium Energy Grating), with

periods of 2000 and 4000

�

A respectively. The HEG and MEG dispersion directions are each inclined

about 5 degrees to the FCY axis so that the dispersed spectra form an X shape on the imaging

detectors. In normal use, the LETG is employed in conjunction with the HRC-S detector, since

ACIS doesn't have good response at low energy. The HETG is employed with the ACIS-S detector,

whose independent CCD energy resolution facilitates order separation.

In the idealization we adopt here, light from the HRMA passes through a single point G, the

grating node, from which it is dispersed by an angle � along the grating dispersion direction. We

refer to the LEG, HEG and MEG as `grating arms' and consider only one grating arm at a time.
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The distance between G and the focus F is the Rowland distance R, and the best focus for the

dispersed photons lies along a circle in the dispersion plane centered on G with radius R.

A photon of wavelength � passing through G will be deected by an angle

r = sin

�1

(m�=P )

where P is the `grating period' and m, an integer, is the `order'. Most photons enter the zero order

spectrum with m=0, and land exactly where they would have if the grating had not been present -

the zero order position ZO. The next most probable fate for the photons is to be deected into the

m=1 or m=-1 �rst order spectra; successively higher order spectra contain less and less of the total

incident energy.

2 Source based coordinate systems

To analyse the geometry of a spectrum we need to set up coordinate systems for a particular source.

Note that if multiple sources are present in the �eld, their spectra will overlap on the detector making

analysis di�cult.

Consider a sphere whose equatorial plane lies in the dispersion direction and whose center is

at G. Then the dispersion angle r is just longitude on the sphere relative to a meridian passing

through the line S joining G with ZO, the source's zero order position. The latitude d is called the

cross-dispersion angle.

If the source is on axis, ZO lies at the imaging aimpoint and in the mirror nodal coordinates of

paper I the pole of the sphere has coordinates

d

0

= (0;� sin�

G

; cos�

G

) (1)

where �

G

is the angle between the dispersion direction and the spacecraft Y axis. For an o�-axis

source, the dispersion direction is perpendicular to both d

0

and S; we de�ne a cartesian orthonormal

set of Grating Zero Order coordinates (GZO)
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with origin at G. Di�racted photons travel in the X

ZO

; Y

ZO

plane, and the intersection of this plane

with the detector surface de�nes the dispersion direction.

To calculate the wavelength of a photon, we go through several steps:

1. We use the equations of paper I to convert from detected chip coordinates to focal coordinates

(FCX,FCY,FCZ), correcting for the chip position on the SIM and for the SIM translation

and boresight. We now have the position of the dispersed photon relative to the mirror axis

(assumed to coincide with the grating axis).

2. We then calculate the GZO coordinates of the photon by subtracting the FC coordinates of

G (which are just (R,0,0)) and applying a rotation matrix to account for the misalignment of

the GZO axes with the FC axes.
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Figure 1: Grating Zero Order coordinates

3. We now convert from GZO coordinates to longitude and latitude on the GZO sphere,

r = tan
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4. Finally, we apply the dispersion relation

� = P sin r=m

to derive the wavelength assuming the order m is known.

2.1 Grating Di�raction Plane Pixel Coordinates (GDP-1.1)

For analysis purposes it may be useful to de�ne a standard pixel system for creating grating images.

The Grating Di�raction Plane Pixel Coordinates GDX, GDY are de�ned by

GDX = GDX0��

�1

gs

(Y

ZO

=X

ZO

)

GDY = GDY 0 +�

�1

gs

(Z

ZO

=X

ZO

)

(4)

analogously to the Focal Plane Pixel Coordinates. The pixel size �

gs

is chosen to match the

instrument physical pixel size (and in the current GDP-1.1 system is set to 0.154 arcsec, with GDX0

= GDY0 = 32768.50 pixels).

They are related to the angular Grating Di�raction Coordinates by

GDX = GDX0 +�

�1

gs

tan r

GDY = GDY 0 +�

�1

gs

tan d cos r

(5)

3 In-ight numerical values for Chandra

The Rowland diameter is 8632.48mm.

Table 1: Grating properties

Instrument P �

G

(deg)
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HETG 2000.81

�

A -5.18

METG 4001.41

�

A 4.75

LETG 9912.16

�

A +0.016

4 Summary

In this paper we summarized the calculations used by the Chandra data processing system to assign

wavelengths to photons in transmission grating data. The formalism is su�ciently general that it

should be applicable to other missions by appropriately changing the numerical values in section 3.

We thank Dave Huenemorder and Dan Dewey for useful discussions, and Helen He for implement-

ing the software routines used to apply the coordinate transforms in the Chandra data processing

system.
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