Match the Binning of an Image

CIAO 3.4 Science Threads

Table of Contents

- Get Started
- Create an image
- What region does the image cover?
A. dmlist opt=cols
B. dmlist opt=subspace
C. dmcoords
- Run the script (get sky limits)
- Caveats
- Parameter files:
- dmcoords
- dmcoords
- History
- Images
- Offset due to different binning filters

Match the Binning of an Image

CIAO 3.4 Science Threads

Overview

Last Update: 1 Dec 2006 - reviewed for CIAO 3.4: no changes

Synopsis:

There are times that you would like to create an image so that it matches an already-existing image. One example would be creating a full-resolution exposure map of a single detector chip.

Purpose:

To use the get sky limits script to find the binning specification of an image.

Read this thread if:

you want to create an image from a ACIS or HRC event file (or have an existing image) and to determine the binning specification for input into other CIAO tools, e.g. dmcopy or mkexpmap, to match that image.

Get Started

Sample ObsID used: 1838 (ACIS-S, G21.5-09)

File types needed: evt2

This thread uses the get_sky_limits script; for information about the script, consult the help file ("ahelp get sky limits"). The most recent version of get_sky_limits is v1.6 (02 November 2004):

```
unix% grep Id `which get_sky_limits`
% $Id: get_sky_limits,v 1.6 2004/11/02 16:22:30 dburke Exp $
```

Please check that you are using the most recent version before continuing. If you do not have the script installed or need to update to a newer version, please refer to the Scripts page.

Create an image

As an example, we select a region of the observation that we are interested in:

```
unix% dmcopy \
```

 "acisf01838N001_evt2.fits[sky=box \((4182,4392,1172,1184)][b i n \quad x=:: 4, y=:: 4]\) " img.fits

What region does the image cover?

The region represented by the image can be found in one of several ways:

A. dmlist opt=cols

The cols option of dmlist produces a report on the various coordinate systems stored for the image. In this case we find:

B. dmlist opt=subspace

The subspace option of dmlist describes the filters that have been applied to the data:

unix\% dmlist img.fits subspace		more	
--- Component 1 ---			
1 sky	Real8	Box (4182,4392	2,1184)
1 sky	Real8	Field area =	709e+06
1 sky	[1] x	3596.0:	4768.0
1 sky	[2] y	3800.0:	4984.0
2 time	Real8	TABLE GTI7	
		84245785.95	567: 84
3 ccd_id	Int2	7:7	

Match the Binning of an Image - CIAO 3.4

C. dmcoords

The dmcoords tool can be used to calculate the edges of the image in a variety of coordinate systems. Here we use it in the non-interactive mode to find the bottom-left and top-right corners:

```
unix% punlearn dmcoords
unix% dmcoords img.fits opt=logical logicalx=0.5 logicaly=0.5
unix% echo "x = `pget dmcoords x` y = `pget dmcoords y`"
x = 3595.5 y = 3799.5
unix% punlearn dmcoords
unix% dmcoords img.fits opt=logical logicalx=294.5 logicaly=395.5
unix% echo "x = `pget dmcoords x` y = `pget dmcoords y`"
x = 4771.5 y = 5379.5
```

The parameter files after running these two commands can be found below: bottom left and top right.

Run the script (get_sky_limits)

The get_sky_limits script returns the text you would use in both a DM-binning and mkexpmap xygrid specification:

```
unix% get_sky_limits img.fits verbose=1
Checking binning of image: img.fits
    Image has 294 x 297 pixels
    Lower left (0.5,0.5) corner is x,y=3595.5, 3799.5
    Upper right (294.5,297.5) corner is x,y=4771.5, 4987.5
    DM filter is:
        x=3595.5:4771.5:#294,y=3799.5:4987.5:#297
    mkexpmap xygrid value is:
        3595.5:4771.5:#294,3799.5:4987.5:#297
```

The binning specifications are also stored in the parameter file in the dmfilter and xygrid parameters:

```
unix% pget get_sky_limits dmfilter
x=3595.5:4771.5:#294,y=3799.5:4987.5:#297
unix% pget get_sky_limits xygrid
3595.5:4771.5:#294,3799.5:4987.5:#297
```

As discussed in the Caveats section, you may get better results if you use the X, Y range from the data subspace, rather than using dmcoords.

Match the Binning of an Image - CIAO 3.4

Caveats

As discussed in the dmbinning ahelp page, care must be taken when binning real-values columns (such as the SKY column of an event file), otherwise the edges of the files may not match up exactly. This can be seen in the above example it you use the dmfilter expression to create a copy of the image and subtract it from the original. In this case, 4 pixels at the bottom edge of the frame are different.

```
unix\% dmcopy \} \(\\{\quad \text { "acisf01838N001_evt2.fits[bin } x=3595.5: 4771.5: \# 294, y=3799.5: 4987.5: \# 297] " \text { img2.fits }} \end{array}\)
unix\% dmimgcalc img.fits img2.fits diff.fits sub
unix\% dmstat diff.fits centroid=no
diff.fits
    min: -1 @: (3833.5 3801.5 )
    max: 0 © ( 3597.53801 .5 )
    mean: \(\quad-4.5809569619 \mathrm{e}-05\)
    sigma: \(\quad 0.006768121682\)
    sum: -4
    good: 87318
    null: 0
```

The following example shows a larger difference:

```
unix% dmcopy "acisf01838N001_evt2.fits[bin x=3570:4874:16,y=3650:4980:16]" zoom16_1.fits
unix% dmcopy "acisf01838N001_evt2.fits[x=3570:4874,y=3650:4980][bin x=::16,y=::16]" zoom16_2.fits
unix% dmimgcalc zoom16_1.fits zoom16_2.fits zoom_diff.fits sub
unix% dmstat zoom_diff.fits centroid=no
zoom_diff.fits
\begin{tabular}{llll}
\(\min :\) & -27 & \(@:\) & \((40904266)\) \\
\(\max :\) & 40 & \(@:\) & \((40424234)\)
\end{tabular}
    mean: 0
    sigma: 1.3381518623
            sum: 0
    good: 6888
    null: 0
```

The resulting image (zoom_diff.fits) is shown in Figure 1 1 ค X, Y ranges of the files to be:

```
zoom16_1.fits: x = 3570.0:4882.0 y = 3650.0:4994.0
zoom16_2.fits: x = 3570.0:4874.0 y = 3650.0:4980.0
```

```
Parameters for /home/username/cxcds_param/dmcoords.par
    infile = img.fits Input dataset/block specification
#
# Position of photon in different coord systems
#
    chip_id = 6 Chip ID number
    chipx = 992.2008917225646 Chip x [pixel]
    chipy = -117.7120835385116 Chip Y [pixel]
    tdetx = 0 TDETX [pixel]
    tdety = 0 TDETY [pixel]
        detx = 3827.862706467882 FPC X [pixel]
        dety = 4613.263006148494 FPC Y [pixel]
            x = 3595.5 Sky X [pixel]
            y = 3799.5 Sky Y [pixel]
    logicalx = 0.5 X coordinate in binned image [pixel]
```


Match the Binning of an Image - CIAO 3.4

```
                logicaly = 0.5 Y coordinate in binned image [pixel]
                    ra = 18:33:49.370 RA [deg or hh:mm:ss]
                    dec = -10:37:49.78 Dec [deg or dd:mm:ss]
            theta = 4.77581941165613 Off axis angle [arcmin]
                phi = 117.4674954453872 Azimuthal angle [deg]
            order = 0 Grating order
            energy = 1 Energy [keV]
wavelength = 0
            ra_zo = 18:33:49.370
            dec_zo = -10:37:49.78
        (asolfile = none)
        (option = )
#
# Override setup for observation
All parameters here are strings so that they can
be set blank, in which case the data file value is used
    (celfmt = hms) 
    (grating = ) Grating
            (fpsys = ) FP convention
                (sim = ) SIM position (eg 0.0 0.0 -190.6)
    (displace = ) STF displacement (X,Y,Z,AX,AY,AZ)
        (ra_nom = ) Nominal pointing RA [deg or hh:mm:ss]
        (dec_nom = ) Nominal dec [deg or dd:mm:ss]
    (roll_nom = ) Nominal roll [deg]
        (ra_asp = ) Instantaneous pointing RA [deg]
        (dec_asp = ) Instantaneous pointing Dec [deg]
    (roll_asp = ) Instantaneous Aspect roll [deg]
#
    (geompar = geom) Parameter file for Pixlib Geometry files
    (verbose = 0) Debug Level
```

 (mode \(=q l\))
 Parameters for /home/username/cxcds_param/dmcoords.par
infile $=$ img.fits Input dataset/block specification
\#
\# Position of photon in different coord systems
\#

```
    chip_id = 8 Chip ID number
    chipx = 420.8040825766388 Chip X [pixel]
    chipy = 1145.394151296928 Chip Y [pixel]
        tdetx = 0 TDETX [pixel]
        tdety = 0 TDETY [pixel]
            detx = 5339.916579114716 FPC X [pixel]
            dety = 3351.094599709191 FPC Y [pixel]
                x = 4771.5 Sky X [pixel]
                y = 5379.5 Sky Y [pixel]
    logicalx = 294.5 X coordinate in binned image [pixel]
    logicaly = 395.5 Y coordinate in binned image [pixel]
            ra = 18:33:10.140 RA [deg or hh:mm:ss]
            dec = -10:24:52.40 Dec [deg or dd:mm:ss]
        theta = 11.88772992568938 Off axis angle [arcmin]
            phi = 329.0580869148563 Azimuthal angle [deg]
            order = 0 Grating order
        energy = 1 Energy [keV]
    wavelength = 0 Wavelength [A]
            ra_zo = 18:33:10.140 RA of zero order
            dec_zo = -10:24:52.40 Dec of zero order
        (asolfile = )
            (option = )
```

\#

Match the Binning of an Image - CIAO 3.4

```
# Override setup for observation
# All parameters here are strings so that they can
# be set blank, in which case the data file value is used
#
        (celfmt = hms) RA and Dec format [deg or hms] (xx.xx or xx:xx:xx.x)
        (detector = )
        (grating = )
            (fpsys = )
            (sim = )
    (displace = )
        (ra_nom = )
        (dec_nom = ) Nominal dec [deg or dd:mm:ss]
    (roll_nom = )
        (ra_asp = ) Instantaneous pointing RA [deg]
        (dec_asp = ) Instantaneous pointing Dec [deg]
        (roll_asp = )
#
    (geompar = geom) Parameter file for Pixlib Geometry files
        (verbose = 0)
        (mode = ql)
    Detector (ACIS or HRC-I or HRC-S)
    Grating
    FP convention
SIM position (eg 0.0 0.0 -190.6)
    STF displacement (X,Y,Z,AX,AY,AZ)
    Nominal pointing RA [deg or hh:mm:ss]
    Nominal dec [deg or dd:mm:ss]
    Nominal roll [deg]
    Instantaneous pointing Dec [deg]
    Parameter file for Pixlib Geometry files
```


History

04 Jan 2005 updated for CIAO 3.2: minor change to dmcoords parameter file
16 Dec 2005 reviewed for CIAO 3.3: no changes
01 Dec 2006 reviewed for CIAO 3.4: no changes

Match the Binning of an Image - CIAO 3.4

Image 1: Offset due to different binning filters

Match the Binning of an Image - CIAO 3.4

