Apply an ACIS Gain Map

CIAO 3.4 Science Threads

Table of Contents

- <u>Get Started</u>
 - ♦ <u>Related acis process events threads</u>
- Generate A New Level=1 Event File
 - <u>Determine the eventdef parameter</u>
 - ♦ <u>Run acis process events</u>
- Generate A New Level=2 Event File
 - ♦ <u>Apply grade/status filters</u>
 - ♦ <u>Apply GTI filters</u>
- <u>Summary</u>
- Parameter files:
 - ♦ acis process events
- <u>History</u>

Apply an ACIS Gain Map

CIAO 3.4 Science Threads

Overview

Last Update: 21 May 2007 - need to set stop=none if aspect solution is not provided

Synopsis:

The gainfile is used to compute the ENERGY and PI of an event from the PHA value; see the <u>PI dictionary entry</u> for more information. Each of the values is stored in a column of the same name in the event file. Using the correct gainmap is especially important if one is interested in ENERGY, PI, or the data is for a grating observation. Later in the analysis, the FEF and OSIP files that correspond to the gain map should be used to create an RMF for the data.

Purpose:

To generate a new level=2 event file with the proper gain map applied. If you have already run the <u>Apply the</u> <u>ACIS CTI Correction</u> thread, the newest available gain map has been to the data; it *is not necessary* to run this thread as well.

Read this thread if:

you are working with any ACIS observation (imaging or grating) that is affected by the Calibration Updates.

Note: if you are working with imaging data, it is important that the calibration applied to the event file is consistent with the RMF tool chosen. Specifically, a different gain file must be used when running <u>acis process events</u>; more information is available in the <u>Creating ACIS RMFs why topic</u>. It is recommended that users apply the default gain file to the data, and use <u>mkacisrmf</u> to create the imaging RMF file.

Calibration Updates:

Get Started shows how to check the CALDBVER and temperature of your observation.

- <u>CALDB v3.3.0</u> (18 Dec 2006): A new set of gain files for -120 data have been added to the CALDB. Only calibration for the BI chips (S1, S3) has changed in this file; calibration for the FI chips is identical to the v5 file. The <u>How CIAO 3.4 and CALDB 3.3.0 Affect Your Analysis</u> section of the CIAO release notes explains how the files will affect your analysis.
- <u>CALDB v3.2.1</u> (15 Dec 2005): The gain for the back-illuminated (BI) chips ACIS–S1 and S3 has been upgraded to match the BI gains from the acisD2000–01–29gain_ctiN0005.fits file. See <u>How CALDB</u> 3.2.1 Affects Your Analysis for details.
- <u>CALDB v3.2.0</u> (21 Nov 2005): New gain files for -120 data have been added to the CALDB; see the <u>CIAO</u> 3.3 release notes for information on how they will affect your analysis.

Apply an ACIS Gain Map - CIAO 3.4

- <u>CALDB v3.0.0</u> (15 Dec 2004): New default gain file (acisD2000-01-29gain_ctiN0003.fits).
- <u>CALDB v2.7</u> (7 Aug 2001): New gainfiles for analyzing -120 degree observations taken on the S3 chip.
- <u>CALDB v2.2</u> (15 Feb 2001): All the gainfiles were updated in this release.

Related Links:

- Analysis Guide: ACIS Data Preparation
- <u>Apply the ACIS CTI Correction</u> thread: it is strongly recommended that you reprocess imaging data with this new calibration which became part of <u>standard data processing</u> in DS 6.11. The CTI correction is on by default (apply_cti=yes) in acis_process_events.
- <u>Corrections for time-dependence of ACIS gain</u>: describes the gain change correction algorithm which was derived for the CTI-corrected data in the FI chips and the uncorrected data in S3. This correction will be implemented in acis_process_events in a future release of CIAO; it can be applied now via a C program available from the software exchange page.

Proceed to the <u>HTML</u> or hardcopy (PDF: <u>A4 / letter</u>) version of the thread.

Get Started

Sample ObsID used: 1838 (ACIS-S, G21.5-09)

File types needed: evt1; flt1; bpix1

If you created a new bad pixel file by running the <u>Create a New ACIS Bad Pixel File: Identify ACIS Hot Pixels</u> and <u>Cosmic Ray Afterglows thread</u>, use that file in this analysis. Otherwise, use the bpix1.fits file from the Archive.

Check the CALDBVER keyword in the header

```
unix% <u>dmkeypar</u> acisf01838_000N001_evt1.fits CALDBVER echo+
1.4
```

Also, determine if this is -120 degree S3 data (as explained in the <u>Overview</u>):

```
unix% dmkeypar acisf01838_000N001_evt1.fits FP_TEMP echo+
153.446014
unix% dmkeypar acisf01838_000N001_evt1.fits DETNAM echo+
ACIS-012367
```

See this FAQ for more information on checking the temperature of your observation. The S3 chip is ccd_id=7, as shown in Figure 6.1 of the POG.

Since this is -120 degree S3 data which was processed with a CALDBVER lower than 3.2.0, complete this thread in its entirety.

Related acis_process_events threads

There are other threads that should be considered, since they may affect how acis_process_events is run. The <u>Create a New Level=2 Event File thread</u> shows how to combine all of these options into a single run of acis_process_events.

- Apply the Time-Dependent ACIS Gain Correction
- <u>Remove Pixel Randomization</u>
- <u>Apply/Remove PHA Randomization</u>
- <u>Apply the ACIS CTI Correction</u>

Generate A New Level=1 Event File

Determine the eventdef parameter

The <u>eventdef</u> parameter specifies the names and data types of the columns in the output event data file. Four predefined strings are included in the parameter file for acis_process_events:

READMODE	DATAMODE	event mode	eventdef string
TIMED	(V)FAINT	timed exposure (very) faint	stdlev1
TIMED	GRADED	timed exposure graded	grdlev1
CONTINUOUS	CC(33)_FAINT	continuous clocking (3x3) faint	cclev1
CONTINUOUS	CC(33)_GRADED	continuous clocking (3x3) graded	ccgrdlev1

If you are unsure of the event mode of your observation, the information can be found in the READMODE and DATAMODE values stored in the file header:

```
unix% <u>dmkeypar</u> acisf01838_000N001_evt1.fits READMODE echo+
TIMED
unix% dmkeypar acisf01838_000N001_evt1.fits DATAMODE echo+
FAINT
```

This is a timed exposure faint observation, so the proper eventdef parameter is "stdlev1." The full parameter syntax of each eventdef string may be found in <u>plist acis process events</u>.

Run acis_process_events

Running this tool with the <u>SDP</u> level=1 event file as the input will produce a *new* level=1 event file that has the latest CALDB applied, meaning that the newest gain map will be picked up. Since the <u>CTI</u> and <u>Time–Dependent</u> <u>Gain</u> corrections are on by default, they will both be applied (when possible).

```
unix% punlearn <u>acis process events</u>
unix% pset acis_process_events infile=acisf01838_000N001_evt1.fits
```

```
unix% pset acis_process_events outfile=acis_1838_new_evt1.fits
unix% pset acis_process_events badpixfile=acis_1838_new_bpix1.fits
unix% pset acis_process_events eventdef=")stdlev1"
unix% pset acis_process_events <u>stop</u>=none
unix% acis_process_events
Input event file or stack (acisf01838_000N001_evt1.fits):
Output event file name (acis_1838_new_evt1.fits):
aspect offset file ( NONE | none | <filename>) (NONE):
```

It is important to note the unusual syntax of the eventdef parameter; the tool will not access the predefined string if the leading ")" is missing (see example 6 of ahelp parameter).

The content of the parameter file may be checked using plist acis process events.

You may see a warning about the number of event islands that contain one or more bad pixels:

```
# acis_process_events (CIAO 3.4): The following error occurred 26941
times: dsAFEBADPCNTERR -- WARNING: Event island contains 1 or more bad pixels
```

It is explained in this FAQ and may be ignored.

Generate A New Level=2 Event File

If you are working with grating data, you should proceed to the <u>Obtain Grating Spectra from HETG/ACIS–S Data</u> thread or the <u>Obtain Grating Spectra from LETG/ACIS–S Data</u> thread at this point to generate the correct level=1.5 and level=2 files. For non–grating data, continue with the following steps.

Apply grade/status filters

Filter for bad<u>grades</u> (using ASCA grades) and for a "clean" status column (ie all bits set to 0):

```
unix% punlearn <u>dmcopy</u>
unix% dmcopy "acis_1838_new_evt1.fits[EVENTS][grade=0,2,3,4,6,status=0]" \
acis_1838_flt_evt1.fits
```

Apply GTI filters

The <u>Good Time Intervals</u> (GTIs) supplied by the pipeline now need to be applied. Simultaneously, an unnecessary column is eliminated from the output:

```
unix% punlearn dmcopy
unix% dmcopy "acis_1838_flt_evt1.fits[EVENTS][@acisf01838_000N001_flt1.fits][cols -phas]" \
acis_1838_evt2.fits
```

```
Be sure to include the @ symbol in the <u>filter expression</u>; the command will not be executed properly if it is omitted.
```

Summary

This thread is complete; the new level=2 event file is named acis_1838_evt2.fits.

Parameters for /home/username/cxcds_param/acis_process_events.par _____ # # acis_process_events.par- Parameter file for acis_process_events program # # _____ infile = acisf01838_000N001_evt1.fits Input event file or stack outfile = acis_1838_new_evt1.fits Output event file name acaofffile = NONEaspect offset file (NONE | none | <filename>)(apply_cti = yes)Apply CTI adjustment?apply_tgain = yes)Apply time-dependent gain adjustment? Apply time-dependent gain adjustment? (apply_tgain = yes) (alignmentfile =)acaofffile -> NONE) sim/fam alignment file (NONE | none | <filename>) (obsfile = NONE)obs.par file for output file keywords (NONE | none | <filename>)(geompar = geom)Parameter file for Pixlib Geometry files(logfile = stdout)debug log file (STDOUT | stdout | <filename>)(gradefile = CALDB)grade mapping file (NONE | none | CALDB | <filename>)(gainfile = CALDB)acis gain file (NONE | none | CALDB | <filename>) (badpixfile = acis_1838_new_bpix1.fits) acis bad pixel file (NONE | none | <filename>) (threshfile = CALDB)split threshold file (NONE | none | CALDB | <filename>)(ctifile = CALDB)acis CTI file (NONE | none | CALDB | <filename>)(tgainfile = CALDB)gain adjustment file (NONE | none | CALDB | <filename>) (eventdef =)stdlev1 -> {d:time,s:ccd_id,s:node_id,i:expno,s:chip,s:tdet,f:det,f:sky,s:phas,l:p f:energy,l:pi,s:fltgrade,s:grade,x:status}) output format definition (doevtgrade = yes)Determine eventcheck_vf_pha = no)Check very fainalc_cc_times = no)Estimate the ti(trail = 0.027)Trail fraction(spthresh = 13)Default split ttime offset = 0)Offset to add t Determine event flight grade? Check very faint pixels? (check_vf_pha = no) (calc_cc_times = no) Estimate the times of arrival for CC-mode observation? Default split threshold level (overridden by values in threshfile) Offset to add to event time field to synch ", ---Determine pixel centroid for coord. conversion? perform pha->pi conversion? (requires gain file) Width of Pi bin in eV Number of values to bin energy into (time_offset = 0) Offset to add to event time field to synch w/ fam data (docentroid = no) (calculate_pi = yes) (pi_bin_width = 14.6) (pi_num_bins = 1024) (max_cti_iter = 15) Maximum iterations for the CTI adjustment of each event (cti_converge = 0.1) The convergence criterion for each CTI-adjusted pixel in adu header key containing start/default time value header key containing time of last event Overwrite output event file if it already exists? (tstart = TSTART) (tstop = TSTOP)(clobber = no) (verbose = 0)(stop = none) (instrume = acis) $(rand_seed = 1)$ (rand_pha = yes) (rand_pix_size = 0.5) pixel randomization width (-size..+size) 0=no randomization (stdlev1 = {d:time,s:ccd_id,s:node_id,i:expno,s:chip,s:tdet,f:det,f:sky,s:phas,l:pha,l:pha_ro, l:pi,s:fltgrade,s:grade,x:status}) TE faint modes event definition string (grdlev1 = {d:time,s:ccd_id,s:node_id,i:expno,s:chip,s:tdet,f:det,f:sky,l:pha,l:pha_ro,s:corn_ l:pi,s:fltgrade,s:grade,x:status}) TE graded event format definition string (cclev1 = {d:time,s:ccd_id,s:node_id,i:expno,s:chip,s:tdet,f:det,f:sky,f:sky_ld,s:phas,l:pha, f:energy,l:pi,s:fltgrade,s:grade,x:status}) CC faint event format definition string (ccgrdlev1 = {d:time,s:ccd_id,s:node_id,i:expno,s:chip,s:tdet,f:det,f:sky,f:sky_ld,l:pha,l:pha_r f:energy,l:pi,s:fltgrade,s:grade,x:status}) cc graded event format definition string
 (mode = ql)

History

- 03 Jan 2005 updated for CIAO 3.2: minor changes to parameter files; new default gain file (CALDB 3.0.0); use ACIS bad pixel file (badpixfile parameter); removed reference to running on a level=2 event file
- 01 Feb 2005 added note about "Event island contains 1 or more bad pixels" warning
- 20 Jun 2005 CIAO 3.2.2 patch: minor acis_process_events parameter change (default value of <u>threshfile</u> is CALDB instead of NONE)
- 12 Dec 2005 updated for CIAO 3.3: new gain files in CALDB 3.2.0; output filenames include ObsID
- 14 Jun 2006 late update: new gain files in CALDB 3.2.1
- 18 Dec 2006 updated for CIAO 3.4: new calibration files in CALDB 3.3.0; removed use of "rand_pha=no" in acis_process_events, as most users should keep the PHA randomization (see the Apply/Remove PHA Randomization thread); CIAO version in warnings
- 21 May 2007 need to set <u>stop=none</u> if aspect solution is not provided

URL: http://cxc.harvard.edu/ciao/threads/acisgainmap/

Last modified: 21 May 2007