
URL: http://cxc.harvard.edu/ciao3.4/slang−usermodel.html
Last modified: December 2006

AHELP for CIAO 3.4 usermodel Context: slang

Jump to: Description Examples CHANGES IN CIAO 3.0 See Also

Synopsis

Creating Sherpa Usermodels with S−Lang

Description

This document describes how to use the S−Lang programming language to create a user−defined Sherpa model.
Such a model can then be fit to your data in exaclty the same manner as any of the pre−defined models in Sherpa.

Creating a S−lang based model in Sherpa is a two step process. First, a S−lang function with specific inputs must
be compiled, and then a special Sherpa/S−lang function must be called to register the model with Sherpa. Once
created, a S−lang model is entirely equivalent to any built−in model in terms of usability. A simple example is
shown below, for a power law model:

define slang_pow() {

 variable p, norm, Emin, Emax, dE, Result;

 if (_NARGS == 3) {
 (p, norm, Emin) = ();
 Result = norm*(Emin^(−p));

 } else if (_NARGS == 4) {
 (p, norm, Emin, Emax) = ();
 dE = Emax − Emin;
 Result = norm*(Emin^(−p))*dE;
 }

 Result = typecast(Result, _typeof(Emin));
 return Result;
}

and the Sherpa/S−lang command to register the model after it has been compiled with the evalfile() command is:

 sherpa> () = register_model("slang_pow",["power","norm"], 1,
 [1.0,1.e−2], % default values
 [−10,1.e−20], % Minimum values
 [10,1.e5], % Maximum values
 [1,1]); % Both thawed by default

Ahelp: usermodel − CIAO 3.4

usermodel 1

http://cxc.harvard.edu/ciao3.4/slang-usermodel.html

S−lang User Model Function Parameters

The S−lang function takes a variable number of arguments, depending upon the number of model parameters, and
returns a vector of the evaluated model on the S−lang stack. The input arguments are:

Variable Value

P_1 First function parameter value

P_2 Second function parameter value

P_i i−th function parameter value

P_n Last function parameter value

X Vector of points at which to evaluate the function

X_max (Possible) vector of bin maximum points

Integrated and Differential Models

One complication in writing a S−lang usermodel for Sherpa is that Sherpa models may be integrated (for use with
binned data) or not (for unbinned or differential data). Sherpa, by default, creates all S−lang usermodels with
integrate off, although this can be changed after the model is created using the <modelname> integrate on
command. If integrate is off, the model is expected to caluculate a value at each input point X. If integrate is on,
two vectors, Xmin and Xmax, will be passed to the function. In this case, the function should return the value of
the model integrated over the each bin. The accuracy of the integration is up to the model author. Depending on
the model and the input data, a simple evalution at one bin edge (or the center of the bin) and multiplication by the
bin width (as shown in the example above) or an analytic integral may be needed. Note that the units output from
the model are different in each case; if the model is not integrated, the units have a "per X−axis unit length", i.e.
per keV or per Angstrom, while in the binned case they do not. Since the user can switch between wavelength and
energy units at will in Sherpa (via analysis wavelength or analysis energy), the model writer must handle all these
cases to have a complete model.

Dealing with binned data

A common mistake when using S−lang usermodels with PHA−type data is that PHA data are inherently binned,
so the model have integrate set to "on". The code must integrated between the lower and upper edge of each
detector channel to get the total photons in the channel. If this is not done, Sherpa will still calculate a result, with
parameters that frequently will be close to the correct values except for a very wrong normalization.

Dealing with unbinned data

Sherpa can also use unbinned data, such as a list of X and Y points which has no inherent binning. Is is possible
that the data may be binned, but the user wants to use the model with "integrate off." In which case the
normalization will be incorrect, since the model will have different units than the data. In either case, Sherpa
passes a single vector X to the function. In this case, the model should simply evaluate the function at each X
point and return the resulting vector. Note that in the case of binned data with integrate off, the bin minimum (not
the bin center) is passed to the function; this is how Sherpa treats all such cases.

Coding details

Since Sherpa allows any model to be set to integrate off, any S−lang usermodel must be able to deal with either
binned or unbinned data. The simplest method is to check how many values have been passed to the routine; for a

Ahelp: usermodel − CIAO 3.4

2 S−lang User Model Function Parameters

model with M parameters, there will be either M+1 (in the unbinned case) or M+2 (for binned data). If the M+1
values are passed, the routine should return the model evaluated at the requested points, and if M+2 values are
given, the code should return the model integrated over each low to high bin.

Units

As noted above, the units of the independent axis (or axes) are vital. The routine get_axes(datasetNum) can be
used to retrieve a structure containing the units for dataset datasetNum. When a model is evaluated in a fit, the
currently active dataset number can be determined with the Sherpa routine get_dataset_number(). In the case of
basic spectral models, the input units with be either keV (if analysis energy is set) or Angstroms (if analysis wave
is set). The expected output in these cases is photons/cm**2/s in each bin (for binned data) or
photons/cm**2/s/keV or photons/cm**2/s/A in the unbinned case. For more complex models, the values of the
independent axes should be checked carefully.

S−lang types

One Sherpa requirement is that the datatype of the returned result be the same as the input vector. This can be
enforced by using the following command before returning the result via

Result = typecast(Result, _typeof(Emin));

where Emin the input vector and Result the model's calculated values. This S−lang command simply forces the
returned value to have the same type as the input.

Compiling the user model

The model can be compiled with the evalfile command, a S−Lang function which loads the given file into the
S−Lang interpreter. To read in the S−Lang code stored in the file myusermodel.sl, the syntax is:

 sherpa> () = evalfile("./myusermodel.sl")

The initial '() =' is used to ensure that the stack is properly cleared after execution, avoiding unwanted messages
printed to the screen.

Registering the new model with Sherpa

After the new model code is compiled, it must be registered with Sherpa using the register_model function. The
syntax is:

 () = register_model("new model name",
 ["parameter1","parameter2",...,"parmeterN",],
 ModelDimension,
 [p1_default,p2_default,...,pN_default],
 [p1_minimum,p2_minimum,...,pN_minimum],
 [p1_maximum,p2_maximum,...,pN_maximum],
 [p1_thawed, p2_thawed, ...,pN_thawed]);

for a total of seven arguments. The first argument is a S−lang string which is the compiled function's name and
will become the name of the new model (for example some of Sherpa's built−in model names are ngauss, xsapec,
and delta2d). The second argument is an N−element string vector giving the names of each of the N parameters,
such as "pos", "ampl" or "kT". The third argument gives the dimensionality of the model; spectral models are all
one−dimensional, but a spatial model (such as the built−in model gauss2d) could have two. The next three
arguments are all N−element vectors giving the default, minimum, and maximum values of each model

Ahelp: usermodel − CIAO 3.4

Units 3

parameter. The last argument is a N−element integer vector which gives the default status (either thawed or
frozen) for each model parameter; either 1 for thawed or 0 for frozen is allowed. These last four arguments are
optional; if they are set to NULL values, standard values with be used.

Example 1

() = register_model("slang−blackbody", ["kT","ampl"], 1, [1.0, 1.0],
[0.001,0.0],[100.0,1.e10],[1,1])

This example registers a new one−dimensional function slang−blackbody, with parameters kT and ampl. The
default parameter values are 1.0 and 1.0, with minima 0.001 and 0.0 and maxima 100 and 1.e10, respectively.
Both parameters are initially thawed.

The S−lang code for the model, which is similar to the Sherpa bbody routine, is shown here:

define slang_blackbody() {

 variable kT, ampl, X, Xmax=NULL, savestack=NULL, EokT=NULL;
 if (_NARGS == 3) (kT, ampl, X) = ();
 if (_NARGS == 4) (kT, ampl, X, Xmax) = ();
 variable Result = Double_Type [length(X)];
 % Are the X−axis units keV or Angstrom?
 if (_stkdepth() != 0) savestack = __pop_args(_stkdepth());
 variable curr_axis = get_axes(get_dataset_number());
 if (savestack != NULL) __push_args(savestack);
 if (length(curr_axis) != 1) {
 message("Error: dimension of dataset does not match that of model");
 return NULL;
 }
 if (strcmp(curr_axis.axisunits,"keV")==0) EokT = X/kT;
 if (strcmp(curr_axis.axisunits,"A")==0) EokT = (12.3984/X)/kT;
 if (EokT == NULL) {
 message("X−axis units unknown, cannot calculate model.");
 return NULL;
 }
 variable gpL = where(EokT <= 1.e−4);
 variable gpM = where(EokT > 1.e−4 and X/kT <= 60.0);
 variable gpH = where(EokT > 60.0);

 if (strcmp(curr_axis.axisunits,"keV")==0) {
 Result[gpL] = ampl*kT*X[gpL];
 Result[gpM] = ampl*X[gpM]*X[gpM]/(exp(EokT[gpM]) − 1.0);
 }
 if (strcmp(curr_axis.axisunits,"A")==0) { % Run Wavelength model
 Result[gpL] = kT/(X[gpL]^3)/12.3984;
 Result[gpM] = 1.0/(X[gpM]^4)/(exp(EokT[gpM]) − 1.0);
 }
 Result[gpH] = 0.0;
 if (Xmax !=NULL) Result = Result*(Xmax−X);

 Result = typecast(Result, _typeof(X));
 return Result;
}

Note that the routine checks the units of the input X−axis to see if it is in keV or Angstrom units, and runs the
appropriate model. The Sherpa routine get_dataset_number() gives the number of the currently evaluated dataset,

Ahelp: usermodel − CIAO 3.4

4 Example 1

which is passed to the get_axes() call to return a structure describing the independent axes. The
__pop_args()/__push_args() calls are needed to clear the stack because it stack may not be empty depending on
the circumstances of the call, and get_axes() requires a clear stack.

Example 2

() = register_model("linemodel", ["ampl","intcpt"], 1, [2,0],
NULL,NULL,[1,0])

This example shows a how to register the S−lang function linemodel. In the register_model call, the parameter
defaults for ampl and intcpt are set to 2 and 0 respectively, but the parameter minima and maxima are left for
Sherpa to set. In addition, the first parameter (ampl) is set to be thawed by default, but the intcpt parameter is
frozen by default.

The S−lang code for the model is shown here:

 define linemodel() {
 variable ampl, intercept, x, xhi;
 variable size = 0;
 variable i = 0;
 variable y;

 % Pop inputs off of stack. Model parameters
 % are popped off in the same order they
 % are listed when you call register_model.
 % The appropriate x array(s) were pushed on the
 % stack after the model parameters.

 if (_NARGS == 3) (ampl, intercept, x) = ();
 if (_NARGS == 4) (ampl, intercept, x, xhi) = ();

 size = length(x);
 y = Float_Type[size];

 if (__is_initialized (&xhi) == 0) {
 y = ampl * x + intercept;
 } else {
 for (i = 0; i < size; i++)
 y[i] = (ampl * x[i] + intercept) * (xhi[i] − x[i]);
 }

 if (Float_Type == _typeof(x)) y = typecast(y, Float_Type);

 % Push y array onto stack −− sherpa retrieves it from there
 return y;
 }

It is a simple linear model with two parameters, ampl and intcpt. In the unbinned model (when xhi is not passed to
the routine), it calculates all the y values simultaneously. As an example, when the data is binned, the code shows
how each value can be calculated individually using a for loop. This method will usually execute slower than the
vector notation, but will work just as well.

Example 3

() = register_model("delta_sin2d",["A","B","w"], 2, [1.0,100.0,1.e−2],
[0.0,1.0,1.e−20], [100.,1024.,1.e5], [1,1,1]);

Ahelp: usermodel − CIAO 3.4

Example 2 5

This example shows a how to register a two−dimensional S−lang usermodel. In the register_model call, the
parameter defaults for A, B, and w values are set to 1, 100, and 0.01 respectively, with minima 0, 1, and 1.e−20
and maxima of 100, 1024, and 1.e5. All three parameters are thawed by default.

The S−lang code for the (admittedly unphysical) model is shown here:

define delta_img(x) { % Define a delta−function for imaging

 variable result;

 if (typeof(x) == Array_Type) {
 result = 0.0*x;
 result[where(x < 1)] = 1.0;
 } else {
 if (x < 1) result = 1.0;
 }
 return result;
}

define delta_sin2d() {

 variable A, B, w;
 variable Xmin, Xmax, Ymin, Ymax, dX, dY, Result;

 if (_NARGS == 5) (A, B, w, Xmin, Ymin) = ();
 if (_NARGS == 7) {
 (A, B, w, Xmin, Ymin, Xmax, Ymax) = ();
 dX = Xmax − Xmin;
 dY = Ymax − Ymin;
 }
 Result = A*delta_img(Ymin − B*sin(w*Xmin));
 Result = typecast(Result, _typeof(Xmin));

 return Result;
}

This model describes a line in X,Y space defined by the points where y = B sin(w*x). The amplitude at all points
is A. Although clearly unphysical, this shows how a more complex multi−dimensional model may be created. The
X and Y axes need not have the same units; Sherpa allows for mixed axes−−for example, CC mode data of a
diffuse source may be analyzed where one axis is position and the other energy.

CHANGES IN CIAO 3.0

In CIAO 3.0 the function name was changed from sherpa_register_model() to register_model().

See Also

sherpa
atten, bbody, bbodyfreq, beta1d, beta2d, box1d, box2d, bpl1d, const1d, const2d, cos, delta1d, delta2d,
dered, devaucouleurs, edge, erf, erfc, farf, farf2d, fpsf, fpsf1d, frmf, gauss1d, gauss2d, gridmodel, hubble,
jdpileup, linebroad, lorentz1d, lorentz2d, models, nbeta, ngauss1d, poisson, polynom1d, polynom2d,
powlaw1d, ptsrc1d, ptsrc2d, rsp, rsp2d, schechter, shexp, shexp10, shlog10, shloge, sin, sqrt, stephi1d,
steplo1d, tan, tpsf, tpsf1d, usermodel, xs, xsabsori, xsacisabs, xsapec, xsbapec, xsbbody, xsbbodyrad,
xsbexrav, xsbexriv, xsbknpower, xsbmc, xsbremss, xsbvapec, xsc6mekl, xsc6pmekl, xsc6pvmkl,

Ahelp: usermodel − CIAO 3.4

6 CHANGES IN CIAO 3.0

xsc6vmekl, xscabs, xscemekl, xscevmkl, xscflow, xscompbb, xscompls, xscompst, xscomptt, xsconstant,
xscutoffpl, xscyclabs, xsdisk, xsdiskbb, xsdiskline, xsdiskm, xsdisko, xsdiskpn, xsdust, xsedge, xsequil,
xsexpabs, xsexpdec, xsexpfac, xsgabs, xsgaussian, xsgnei, xsgrad, xsgrbm, xshighecut, xshrefl, xslaor,
xslorentz, xsmeka, xsmekal, xsmkcflow, xsnei, xsnotch, xsnpshock, xsnsa, xsnteea, xspcfabs,
xspegpwrlw, xspexrav, xspexriv, xsphabs, xsplabs, xsplcabs, xsposm, xspowerlaw, xspshock, xspwab,
xsraymond, xsredden, xsredge, xsrefsch, xssedov, xssmedge, xsspline, xssrcut, xssresc, xssssice, xsstep,
xstbabs, xstbgrain, xstbvarabs, xsuvred, xsvapec, xsvarabs, xsvbremss, xsvequil, xsvgnei, xsvmcflow,
xsvmeka, xsvmekal, xsvnei, xsvnpshock, xsvphabs, xsvpshock, xsvraymond, xsvsedov, xswabs,
xswndabs, xsxion, xszbbody, xszbremss, xszedge, xszgauss, xszhighect, xszpcfabs, xszphabs,
xszpowerlw, xsztbabs, xszvarabs, xszvfeabs, xszvphabs, xszwabs, xszwndabs

The Chandra X−Ray Center (CXC) is operated for NASA by the Smithsonian
Astrophysical Observatory.
60 Garden Street, Cambridge, MA 02138 USA.
Smithsonian Institution, Copyright © 1998−2006. All rights reserved.

URL:
http://cxc.harvard.edu/ciao3.4/slang−usermodel.html

Last modified: December 2006

Ahelp: usermodel − CIAO 3.4

CHANGES IN CIAO 3.0 7

http://cxc.harvard.edu/ciao3.4/slang-usermodel.html

Ahelp: usermodel − CIAO 3.4

8 CHANGES IN CIAO 3.0

