
URL: http://cxc.harvard.edu/ciao3.4/sherpa.html
Last modified: December 2006

AHELP for CIAO 3.4 sherpa Context: sherpa

Jump to: Description Examples COMMAND−LINE OPTIONS Bugs

Synopsis

Command summary of Sherpa, CIAO's modeling and fitting engine.

Description

Sherpa is the generalized fitting engine of CIAO. Sherpa enables the user to fit models to data, particularly but
not exclusively, to data that is being returned by NASA's Chandra X−ray Observatory. Sherpa features syntax
that allows the user to construct complex models from simple definitions and to link parameters algebraically.

What commands does Sherpa understand?

As discussed below, Sherpa can be controlled from an interactive prompt, from a command file, or directly
from S−Lang. For all but the last case the allowed syntax is given by the following list:

Commands allowed at the Sherpa prompt or in a Sherpa command file.

Any valid Sherpa command. Note that Sherpa commands are case insensitive, and are generally listed
in upper case in the documentation for clarity. For a list of all Sherpa commands, see "ahelp −c
sherpa".

•

Any valid ChIPS command.•
ahelp and about can be used to access the CIAO on−line help system. By default any help queries will
be restricted to the "sherpa" context,

•

A one−line S−Lang statement that does not need to end with a semi−colon and in which new
variables do not need to be pre−declared. This allows you to enter "a = 23" rather than "variable a =
23;".

•

Any line beginning with "$" or "!" is passed through to the shell (after removing this character). This
allows you to run shell commands from the Sherpa prompt.

•

The shell commands "pwd", "ls", and "cd" are available directly from Sherpa (so you do not need to
say "!pwd").

•

Any line beginning with the "#" character is ignored.•

I. The command line

Sherpa may be launched by typing sherpa on the command line. This brings up the following welcome
message −

Ahelp: sherpa − CIAO 3.4

sherpa 1

http://cxc.harvard.edu/ciao3.4/sherpa.html

 unix% sherpa

 −−−
 Welcome to Sherpa: CXC's Modeling and Fitting Program
 −−−
 Version: 3.2

 Type AHELP SHERPA for overview.
 Type EXIT, QUIT, or BYE to leave the program.

 Notes:
 Temporary files for visualization will be written to the directory:
 /tmp
 To change this so that these files are not deleted when you exit Sherpa,
 edit $ASCDS_WORK_PATH in your 'ciao' setup script.

 Abundances set to Anders & Grevesse

 sherpa>

− and leaves you at an interactive prompt at which you can enter any valid Sherpa, as discussed above.

There are two ways to start Sherpa and get it to execute a pre−determined set of commands. If the ASCII file
fit.shp contains text that could be entered at the Sherpa prompt then it can be processed by saying:

 unix% sherpa fit.shp

This will cause Sherpa to evaluate all the commands in fit.shp and then leave you at the interactive prompt. If
you want Sherpa to exit after processing the commands either add a QUIT statement to the end of the file or
use the "−−batch" command−line option and say

 unix% sherpa −−batch fit.shp

If you want to evaluate a S−Lang script − which can define useful functions or run through a set of commands
− then you have to use the "−−slscript" option:

 unix% sherpa −−slscript fit.s

Here the contents of fit.sl must be valid S−Lang code: variables must be pre−declared (unless you have set the
_auto_declare variable to 1 at the start of the script) and statements require the closing semi−colon, but
S−lang statements can be split across more than one line. After processing the S−Lang file the interactive
prompt will be displayed (the "−−batch" option can be used to cause Sherpa to exit after processing the files).

Any Sherpa resource file will be loaded before any command−line file (either Sherpa or S−Lang format) is
loaded.

You can load in both Sherpa and S−Lang files at the same time using

 unix% sherpa −−slscript fit.sl fit.sh

This evaluates the file fit.sl and then the file fit.shp. Multiple S−Lang files can be specified using "−−slscript"
but only one Sherpa command file. In fact, the command−line processing stops after the first Sherpa
command file is found.

Note that the files can be called anything you like: we use the convention that the extensions "shp" and "sl"
indicate Sherpa and S−Lang files respectively.

II. Sherpa Recovery

If for any reason, Sherpa exits with a nonzero status, a log file of the session is left behind in the user's home
directory to assist in recovering the Sherpa session. This log file contains contains all commands that were

Ahelp: sherpa − CIAO 3.4

2 II. Sherpa Recovery

successfully executed up to the point that Sherpa failed. In such a case, the name of the file will be
$HOME/.sherpa−session−PID, where PID is the process ID of the Sherpa session that failed. For example, if
the PID of a failed Sherpa session was 2048, then if the user types:

 unix% sherpa ~/.sherpa−session−2048

then Sherpa will start and execute all the commands from that session, up to but not including the command
that caused a failure.

When Sherpa exits normally, with an exit status of zero, no such log file is left behind.

III. Sherpa Module Functions

The scripting language S−Lang has been embedded into the CIAO system. Sherpa functionality can be easily
extended with S−Lang scripts. Sherpa also now provides a loadable module, which can be loaded into other
S−Lang applications at run−time (e.g., ChIPS, slsh). The Sherpa module has many functions that provide
access to Sherpa data sets, and that invoke Sherpa functions. See the documentation on sherpa−module for a
list of Sherpa/S−Lang module functions.

The syntax to load the Sherpa module into a S−Lang script is:

require("sherpa");

Note that this will automatically load in the ChIPS, Varmm, and XPA modules if they have not already been
loaded.

IV. Customizing Sherpa

Sherpa can be customised by use of the Sherpa state object (also called customization variable) and the Sherpa
resource file. The approach used is similar to that taken by ChIPS.

V. The Sherpa resource file

When a Sherpa session is started − either directly by the "sherpa" command in a S−Lang program − it looks
for a Sherpa resource file. If found, the contents are processed at the start of the session.

The resource file must be in one of the following locations:

the $SHERPARC environment variable•
$PWD/.sherparc•
$HOME/.sherparc•

The search stops when the first match is made and Sherpa is launched, even if the chosen resource file
contains an error.

The following is an example $HOME/.sherparc file that causes any application that starts Sherpa to print two
messages, turns off the prompting for parameter values when a model is created, changes the optimization
method to SIMPLEX, and defines a simple S−Lang function called "q" which allows you to exit Sherpa by
just entering "q" (or "q()") at the Sherpa prompt.

 message("Starting to process .sherparc")
 paramprompt off
 method simplex
 define q () { () = sherpa_eval("quit"); }

Ahelp: sherpa − CIAO 3.4

III. Sherpa Module Functions 3

 message("Finished processing .sherparc")

Although the first and last lines of the above example create screen output for demonstrative purposes, it is
recommended that the .sherparc file does not contain any command that creates either text or graphical output.

Since Sherpa also loads ChIPS, any customization applied using the ChIPS resource file (see "ahelp chips")
will also be available. Note that the ChIPS resource file is executed before the Sherpa one.

Va. Format of the resource file

Since the resource file is a Sherpa (not S−Lang) script, it may contain simple, one−line S−Lang statements;
this is in contrast to the Varmm resource file, which can contain any set of valid S−Lang statements. The
"evalfile" command can be used to embed S−Lang function definitions, or other statements that require more
than one line − such as setting up a S−Lang user model (see "ahelp slang usermodel") − into the resource file.

For example, if $HOME/slang/myblackbody.sl contains the slang_blackbody() function from the Examples
section of "ahelp slang usermodel", then the following $HOME/.sherparc file will load it and make it
available to Sherpa:

 # find out the location of $HOME
 variable home = getenv("HOME")
 # load the S−Lang usermodel
 () = evalfile(home + "/slang/myblackbody.sl")
 # register the model (this call must all be on one line)
 ()=register_model("slang−blackbody",["kT","ampl"],1,[1.0,1.0],[0.001,0.0],[100.0,1.e10],[1,1])
 print("Loaded and registered slang_blackbody (S−lang usermodel)")

One obvious candidate is for setting fields in the Sherpa state object, which is discussed below. Note that the
S−Lang function save_state() can also be used to make changes to the state object which will we recognised
in new Sherpa sessions (see the discussion below and "ahelp save_state").

VI. Configuration of Sherpa with Sherpa State Objects

Sherpa has several state objects (e.g. configuration files) that control the appearance of plots and floating point
numbers on the screen or the standard output, and the execution of the confidence levels calculations. These
state objects are S−Lang variables that are created when Sherpa is started. In general the content of the state
object can be displayed using print command. The command print(sherpa) lists state objects available in
Sherpa.

sherpa> print(sherpa)
 plot = sherpa_Plot_State
 dataplot = sherpa_Plot_State
 fitplot = sherpa_FitPlot_State
 resplot = sherpa_Plot_State
 multiplot = sherpa_Draw_State
 output = sherpa_Output_State
 regproj = sherpa_VisParEst_State
 regunc = sherpa_VisParEst_State
 intproj = sherpa_VisParEst_State
 intunc = sherpa_VisParEst_State
 proj = sherpa_Proj_State
 cov = sherpa_Cov_State
 unc = sherpa_Unc_State
 con_levs = NULL
 modeloverride = 0
 multiback = 0
 deleteframes = 1
 clobber = 0

Most of the fields in the sherpa state object are actually references to other state objects (in such cases, instead
of showing the value of the field, the print() function shows the type of variable to which that field refers).

Ahelp: sherpa − CIAO 3.4

4 Va. Format of the resource file

The following table lists each field, a description, and the default value:

Field Name Description Default

plot LPLOT style for plots that are not data, fit or residuals plots
See "ahelp
SHERPA.PLOT"

dataplot Style for LPLOT DATA, LPLOT BACK only
See "ahelp
SHERPA.DATAPLOT"

fitplot Style for LPLOT FIT, LPLOT BFIT only
See "ahelp
SHERPA.FITPLOT"

resplot
Style for LPLOT RESIDUALS, LPLOT RATIO, LPLOT
BRESIDUALS, LPLOT BRATIO only

See "ahelp
SHERPA.RESPLOT"

multiplot
Settings to apply when one or more plots are created in the ChIPS
window (e.g., gap width between plots)

See "ahelp
SHERPA.MULTIPLOT"

output
Appearance of floating point numbers printed to standard output
(e.g., precision)

See "ahelp
SHERPA.OUTPUT"

regproj Region projection settings
See "ahelp
SHERPA.REGPROJ"

regunc Region uncertainty settings
See "ahelp
SHERPA.REGUNC"

intproj Interval projection settings
See "ahelp
SHERPA.INTPROJ"

intunc Interval uncertainty settings
See "ahelp
SHERPA.INTUNC"

proj Projection settings
See "ahelp
SHERPA.PROJ"

cov Covariance settings
See "ahelp
SHERPA.COV"

unc Uncertainty settings
See "ahelp
SHERPA.UNC"

con_levs

The command CPLOT creates contour plots of 2D data, models,
etc. (e.g., CPLOT DATA creates a contour plot of the data,
CPLOT SOURCE creates a contour plot of the source model, and
so on). This field allows users to set their own contour levels in
such plots. If sherpa.con_levs is NULL, Sherpa automatically
calculates default values for the levels plotted. If instead the user
sets con_levs equal to an array of values (e.g., "sherpa.con_levs =
[1,2,3]") then those levels are instead plotted by the CPLOT
command. (The setting of the sherpa.con_levs field has no effect
on plots generated with the REG−PROJ and REG−UNC
commands.)

NULL

modeloverride
If true, allow a model to be redefined without first having been
erased (0 = false, 1 = true)

0

multiback
If true, allow multiple backgrounds per data set (0 = false, 1 =
true)

0

deleteframes

The IMAGE command sends 2D images to ds9 for display. If
sherpa.deleteframes is true, then Sherpa deletes all ds9 frames
before sending the data to a newly created frame. If
sherpa.deleteframes is false, then the frames that currently exist
are left alone, and the data are sent to a newly created frame. (0 =
false, 1 = true)

1

Ahelp: sherpa − CIAO 3.4

 Va. Format of the resource file 5

clobber
If true, allow output files to be overwritten if they already exist (0
= false, 1 = true)

0

The values of the fields of a state object can be changed at the command line, just as one would change the
value of any S−Lang variable:

 sherpa> sherpa.clobber = 1

Most of the fields of the sherpa state object are themselves references to other state objects. For example,
sherpa.plot refers to a variable of type sherpa_Plot_State; this variable affects the appearance of plots created
with the LPLOT command. The values of sherpa.plot can be displayed thus:

 sherpa> print(sherpa.plot)
 x_errorbars = 0
 y_errorbars = 0
 errs_style = bar
 errs_type = both
 x_log = 0
 y_log = 0
 curvestyle = step
 curvecolor = default
 symbolstyle = none
 symbolcolor = default
 symbolsize = 2
 xlabel_size = 1.5
 ylabel_size = 1.5
 zlabel_size = 1.5
 title_size = 1.5
 tickvals_size = 1.5
 prefunc = NULL
 postfunc = NULL

Changing sherpa.plot fields as shown here:

sherpa> sherpa.plot.y_errorbars = 1
sherpa> sherpa.plot.curvestyle="simple"

will change the appearance of all subsequent plots created with the LPLOT command.

The state objects sherpa.plot, sherpa.dataplot, sherpa.fitplot, and sherpa.resplot each have fields x_log and
y_log, which control whether or not the x− and y−axis are set to a linear or log scale. These fields can be
changed on an individual basis, as shown in the example above. Sherpa also provides functions to change to
x_log and y_log fields of sherpa.plot, sherpa.dataplot, sherpa.fitplot, and sherpa.resplot all at once; these
functions are called set_xlog(), set_ylog(), set_log(), set_xlin(), set_ylin(), and set_lin(). (See the ahelp files
set_log and set_lin for more information.)

Similarly, sherpa.plot, sherpa.dataplot, sherpa.fitplot, and sherpa.resplot each have fields x_errorbars and
y_errorbars, which control whether or not error bars are added to plots. The functions set_erron(),
set_xerron(), set_yerron(), set_erroff(), set_xerroff(), and set_yerroff() turn error bars on and off, for all state
objects at once. (See the ahelp files set_erron and set_erroff for more information.)

The user can also save the current values of all fields of all Sherpa state objects to a file, using the S−Lang
function save_state():

sherpa> save_state()
sherpa> save_state("state1.shp")

In the former case, the values of the state objects are saved to the file $HOME/.sherpa−state−rc (which is
overwritten every time save_state() is executed). If $HOME/.sherpa−state−rc exists, then the file is
automatically read in whenever the user starts Sherpa. In the latter case, the state is saved in the file state1.shp;
this file will not be automatically read in. The user can read in the file at any time during the Sherpa session.

Ahelp: sherpa − CIAO 3.4

6 Va. Format of the resource file

This can be useful if, for example, the user wishes to use two or more different plot styles.

VIa. Aliases for Sherpa State Objects

The names of the state objects, and names of their fields, are verbose. This can be good (as the names indicate
the functions of the variables) and bad (as the user must type more at the comamnd line). Fortunately, it is
possible for users to add aliases to their .sherparc files. Adding lines such as the following:

variable sp = sherpa.plot
variable sd = sherpa.dataplot

causes Sherpa to create new variables which are references to the state objects. Thus, instead of typing
"sherpa.plot.x_log = 1", the user can now type "sp.x_log = 1".

VII. Using S−Lang data in Sherpa

Normally, Sherpa reads data from a file and then uses it for fitting, modelling, or data visualization. However,
it is also possible to read data using Varmm S−Lang functions and then tell Sherpa to use these datasets. This
is done by using Sherpa module functions to copy data from a S−Lang variable into Sherpa. Note that this
behaviour is new to CIAO 3.0; in previous versions of Sherpa a much less flexible technique was used that is
no longer supported.

The following example shows an ASCII dataset being read into the Varmm structure AGauss and then loaded
into Sherpa:

 sherpa> AGauss = readfile("phas.dat")
 sherpa> () = load_dataset(1, AGauss)
 sherpa> lplot data

At this point the data is treated as if the dataset had been read in from a file using Sherpa's data command, as
shown by the "lplot data" command. Data from S−Lang variables can also be copied into Sherpa as
backgrounds or errors applied to the data (e.g., using load_backset(), set_errors() functions). For example, if
you wished to use the Varmm "AGauss" as a background dataset you would say:

 sherpa> () = load_backset(1,AGauss)

This ability also extends to response files (ie ARFs and RMFs), using the RSP model:

 sherpa> spec = readpha("source.pha")
 sherpa> rmf = readrmf("source.rmf")
 sherpa> arf = readarf("source.arf")
 sherpa> () = load_dataset(spec)
 sherpa> () = load_arf("response", arf)
 sherpa> () = load_rmf("response", rmf)
 sherpa> instrument = response

If the input PHA file (here source.pha) has the necessary keywords set − ie BACKFILE, RESPFILE, or
ANCRFILE − then the background, RMF and ARF will be read in using these files, without you having to
specify them.

The examples section below shows how data in an ASCII file can be read into Sherpa using S−Lang.

VIII. Defining a Usermodel with S−Lang

Since CIAO 2.2, Sherpa has the ability to define models written in S−Lang that can then be used in the same
manner as any of the in−built Sherpa models (such as bbody or beta2d). The "ahelp slang usermodel"
document provides more information on this facility.

Ahelp: sherpa − CIAO 3.4

VIa. Aliases for Sherpa State Objects 7

IX. Accessing MDLs from S−Lang

Sherpa can store the results of a fitting session in a Model Descriptor List (MDL; "ahelp mdl"). This data can
be accessed from S−Lang using the following functions:

mdl = update_mdl()•
mdl = get_mdl()•
mdl = get_mdl_data()•
mdl = get_mdl_models()•

Note that prior to CIAO 3.0 the function names began with "sherpa_".

As indicated, all the routines return a S−Lang structure representing the MDL. If there are line models
present, then update_mdl() should be used, to ensure that the flux values are recalculated for the given model
parameters. If there are no line models, or the line fluxes are not of interest, then get_mdl() can be used
instead, since it doesn't recalculate the line parameters, and so is faster.

The get_mdl_data() and get_mdl_models() functions only return part of the information stored in the MDL:
the data "block" (ie the list of data, error, RMF and ARF file names) and the model "block" (ie the list of
source models, and the parameter values/ranges) respectively.

If there are no source models defined, then update_mdl() and get_mdl() just return the data "block", as if
get_mdl_data() had been called.

X. Memory Allocation

Sherpa itself doesn't have any hard−coded limits on memory allocation; it will use as much memory as the
machine makes available. It does, however, inherit all the Data Model limits, since the DM is used for file I/O.
Some of the commands − e.g. READ, DATA, BACK, and WRITE − can accept DM virtual file syntax,
including "opt mem" which sets the maximum memory used for a virtual image. "ahelp dmopt" and the
individual command ahelp files have details.

Example 1

Reading data from an ASCII file

If you wish to read in data from an ASCII file, and it has more than two columns, then you need to tell Sherpa
which columns to use. The easiest way is to restrict the columns when reading them in to a Varmm structure
using readascii().

The following example shows how this can be done. The test dataset (example.dat, listed below) contains
three columns − x, y, and the error on y − which we read in using two calls to readascii(). The load_dataset()
and set_errors() functions are then used to tell Sherpa what data and error values should be used. Once this is
done, the data can be fit as with any dataset. Here we use the POLYNOM1D model to fit a line of the form
"y=c0+c1*x" to the data.

 sherpa> $cat example.dat
 # x y error
 1.000 −0.028 1.000
 2.000 1.581 1.414
 3.000 2.714 1.732

Ahelp: sherpa − CIAO 3.4

8 IX. Accessing MDLs from S−Lang

 4.000 4.368 2.000
 5.000 5.686 2.236
 6.000 6.263 2.449
 7.000 7.079 2.646
 8.000 7.898 2.828
 9.000 9.392 3.000
 10.000 9.552 3.162
 sherpa> dat = readascii("example.dat","1,2")
 sherpa> () = load_dataset(1,dat)
 sherpa> err = readascii("example.dat","1,3")
 sherpa> () = set_errors(1, err.col2)
 sherpa> lplot data
 sherpa> paramprompt off
 Model parameter prompting is off
 sherpa> source = polynom1d
 sherpa> thaw polynom1d.c1
 sherpa> fit
 LVMQT: V2.0
 LVMQT: initial statistic value = 36.6616
 LVMQT: final statistic value = 1.29266 at iteration 6
 polynom1d.c0 −0.028
 polynom1d.c1 0.996091

 WARNING:
 The value of polynom1d.c0 is equal to the polynom1d.c0.min limit boundary.
 You may wish to consider changing min/max values and refitting.

 sherpa> polynom1d.c0.min = −5
 sherpa> fit
 LVMQT: V2.0
 LVMQT: initial statistic value = 1.29266
 LVMQT: final statistic value = 0.494812 at iteration 3
 polynom1d.c0 −0.875496
 polynom1d.c1 1.15018

 sherpa> lplot fit

Example 2

Using MDL files to store fit data

In this example we have already fit a simple model to a dataset. We can use update_mdl() − or get_mdl() in
this case since the fit does not contain any line models − to look at the result:

 ...
 sherpa> fitmdl = update_mdl()
 sherpa> print(fitmdl)
 _filename = baabaaazm
 _path = /var/tmp/
 _filter = NULL
 _header = NULL
 _ncols = 25
 _nrows = 0
 index = 1
 type2row = 0
 data = spec.pi
 error = none
 weights = none
 rr_name = AutoReadResponse
 rmf = spec.rmf
 arf = spec.arf
 back = spec_bg.pi
 src = Integer_Type[8]
 comp = Integer_Type[8]

Ahelp: sherpa − CIAO 3.4

Example 2 9

 sc = Integer_Type[8]
 model = String_Type[8]
 parname = String_Type[8]
 parvalue = Float_Type[8]
 parmin = Float_Type[8]
 parmax = Float_Type[8]
 frozen = String_Type[8]
 method = String_Type[8]
 statname = String_Type[8]
 statval = Float_Type[8]
 flux = Float_Type[8]
 fluxerr = Float_Type[8]
 filt_mod = String_Type[8]
 lineid = String_Type[8]

Individual entries of the MDL structure can be examined using standard Varmm functions. Here we look at
the list of models:

 sherpa> printarr(fitmdl.model)
 (cluster * galabs)
 xsraymond[cluster]
 xsraymond[cluster]
 xsraymond[cluster]
 xsraymond[cluster]
 xsraymond[cluster]
 xswabs[galabs]
 xswabs[galabs]

The first entry gives the source model, the remaining lines are related to the parameters for the individual
components, as indicated by the parname variable (we switch to the Varmm writeascii() function so as to print
out more than one column per line):

 sherpa> writeascii(stdout,fitmdl.model,fitmdl.parname)
 (cluster * galabs)
 xsraymond[cluster]
 xsraymond[cluster] cluster.kT
 xsraymond[cluster] cluster.Abundanc
 xsraymond[cluster] cluster.Redshift
 xsraymond[cluster] cluster.norm
 xswabs[galabs]
 xswabs[galabs] galabs.nH

COMMAND−LINE OPTIONS

The command−line options for Sherpa − which can also be listed by entering "sherpa −help" − are:

Option Description

−−batch
Runs in batch mode: the Sherpa welcome message is not displayed, any supplied code is run
as if the ChIPS command "BATCH ON" were specified, and Sherpa exits after evalulating
the code.

−h, −help, or
−−help

Lists the command−line options.

−−slscript
<filename>

Evaluates the S−Lang code in <filename>.

See the section titled "The command line" in the main discussion for more details on how ChIPS and S−Lang
code can be automatically executed by ChIPS using these options.

Ahelp: sherpa − CIAO 3.4

10 COMMAND−LINE OPTIONS

Bugs

See the Sherpa bug pages online for an up−to−date listing of known bugs.

The Chandra X−Ray Center (CXC) is operated for NASA by the Smithsonian
Astrophysical Observatory.
60 Garden Street, Cambridge, MA 02138 USA.
Smithsonian Institution, Copyright © 1998−2006. All rights reserved.

URL:
http://cxc.harvard.edu/ciao3.4/sherpa.html

Last modified: December 2006

Ahelp: sherpa − CIAO 3.4

Bugs 11

http://cxc.harvard.edu/sherpa/bugs/
http://cxc.harvard.edu/ciao3.4/sherpa.html

Ahelp: sherpa − CIAO 3.4

12 Bugs

