
URL: http://cxc.harvard.edu/ciao3.4/groupbycounts.html
Last modified: December 2006

AHELP for CIAO 3.4 groupByCounts Context: sherpa

Jump to: Description Examples NOTES HOW THE GROUPING WORKS See Also

Synopsis

Group a dataset by number of counts or signal−to−noise within Sherpa.

Syntax

groupByCounts([dset,] numCounts)
groupBySNR([dset,] minSNR)
groupAdaptively([dset,] minCounts)
groupAdaptiveSNR([dset,] minSNR)

Description

These functions allow a user to group a dataset from within Sherpa, without having to use the dmgroup tool. They
make it easy to see how sensitive the fit results are to the details of how the data has been grouped. They are
loaded into Sherpa with the call

 require ("sherpa_utils");

Each function takes an optional first argument of dset, which is the number of the dataset to group; if not given it
defaults to 1.

groupByCounts([dset,] numCounts)

Group the dataset so that each group contains at least numCounts counts. The grouping is done by the
grpNumCounts() routine from the group module.

groupBySNR([dset,] minSNR)

Group the dataset so that each group has a signal−to−noise ratio of at least minSNR. The grouping is done by the
grpSnr() routine from the group module.

Ahelp: groupByCounts − CIAO 3.4

groupByCounts 1

http://cxc.harvard.edu/ciao3.4/groupbycounts.html

groupAdaptively([dset,] minCounts)

Adaptively group the dataset so that each group contains at least minCounts counts. The grouping is done by the
grpAdaptive() routine from the group module.

groupAdaptiveSNR([dset,] minSNR)

Adaptively group the dataset so that each group has a signal−to−noise ratio of at least minSNR. The grouping is
done by the grpAdaptiveSnr() routine from the group module.

Example 1

sherpa> data src.pi
sherpa> groupByCounts(20)

In this example we have loaded in a file (src.pi), and then grouped the data so that there are at least 20 counts per
group.

The screen output has been omitted from this, and the following, examples for clarity.

Example 2

sherpa> data src.pi
sherpa> subtract
sherpa> ignore all
sherpa> notice energy 0.5:7.0
sherpa> groupByCounts(20)

Here we background−sutract and filter the data before calling the function. The groupByCounts() routine uses the
un−filtered, un−subtracted data, but re−applies the fitlers and background status before it finishes.

Example 3

sherpa> data 1 src.pi
sherpa> data 2 src.pi
sherpa> subtract 1:2
sherpa> ignore 1:2 all
sherpa> notice 1:2 energy 0.5:7.0
sherpa> groupByCounts(1, 20)
sherpa> groupByCounts(2, 30)
sherpa> paramprompt off
sherpa> source 1 = powlaw1d[pl1]
sherpa> source 2 = powlaw1d[pl2]
sherpa> fit 1
sherpa> fit 2

Here we load in the same file twice, perforem the same filtering on the data, and then group them so that they
have a different number of counts per bin. They are then fit by the same model (a power law). The changes in the
parameters of the source model show how sensitive the fit results are to the particular grouping scheme used.

Ahelp: groupByCounts − CIAO 3.4

2 groupAdaptively([dset,] minCounts)

NOTES

Please see "ahelp sherpa_utils" for information on how to load these routines into Sherpa.

HOW THE GROUPING WORKS

The routines are wrappers around routines from the group module ("ahelp modules group") and take advantage of
the set_group() and set_quality() routines added to Sherpa in CIAO 3.1.

Each routine works in the same way. The dataset is checked to see if it has been background subtracted and what
filters have been applied to it. If either have been set then they are removed and then any previous grouping is
also removed (this is necessary so that the new grouping information can be applied to the dataset). The new
grouping and quality arrays are found by calls to the relevant function from the group module, and then applied to
the dataset. Finally the dataset is background−subtracted, if it was originally, and any filters re−applied.

During the routine, Sherpa may report:

 WARNING: any applied filters are being deleted!

These warnings can be ignored unless there is an associated line saying:

 Note: ignoring filter expression ...

If this latter message is seen then a previously applied filter has been ignored. This message will occur if a filter
has been specified in units of bins or channels, since these values are not invariant when the dataset is re−grouped.

See Also

chandra
guide

sherpa
bye, calc_kcorr, dataspace, dcounts, dollarsign, echo, eflux, eqwidth, erase, flux, get, get_dcounts_sum,
get_dir, get_eflux, get_eqwidth, get_filename, get_flux2d, get_flux_str, get_lfactorial, get_mcounts_sum,
get_pflux, get_source_components, get_verbose, groupbycounts, guess, is, journal, list, list_par, mcounts,
numbersign, paramest, plot_eprof, plot_rprof, prompt, reset, run, set, set_analysis, set_axes, set_coord,
set_dataspace, set_dir, set_verbose, setplot, sherpa−module, sherpa_plotfns, sherpa_utils, show, simspec,
use, version

The Chandra X−Ray Center (CXC) is operated for NASA by the Smithsonian
Astrophysical Observatory.
60 Garden Street, Cambridge, MA 02138 USA.
Smithsonian Institution, Copyright © 1998−2006. All rights reserved.

URL:
http://cxc.harvard.edu/ciao3.4/groupbycounts.html

Last modified: December 2006

Ahelp: groupByCounts − CIAO 3.4

NOTES 3

http://cxc.harvard.edu/ciao3.4/groupbycounts.html

Ahelp: groupByCounts − CIAO 3.4

4 NOTES

