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Outline 
Statistics is the mathematics to describe your data and analysis

1. Distributions: Binomial, Poisson, Gaussian, γ, χ², tν

2. Bayesian Analysis

3. Monte Carlo

1. Bootstrap

2. MCMC

4. Warnings about

1. χ²

2. p-values and the significance of significance

3. Hypothesis Tests: Type I, Type II, Type S, Type M errors

4. F-test
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What is Astrostatistics for?

Obtain estimates and uncertainties on quantities useful for 
astrophysical inference,

while taking into account instrument sensitivities, 
statistical fluctuations, and circumstances of observation,

and avoid the pitfalls of making incorrect inferences.

Importantly, it assists you in asking the right question of 
the data and to obtain the best possible answer.
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Jargon
❖ Probability, p(⋅) — frequency of occurrence or degree of belief

❖ Likelihood, L(θ|D) ≡ p(D|θ) — probability of seeing these data given model

❖ Prior π(θ) — a priori probability of model θ before data are acquired

❖ λ often used for source intensity (Greek for model, Roman for data quantities)

❖ γ(α,β) is the gamma distribution, N(µ,σ²) is the Gaussian, Γ(N+1)=N!  

❖ χ² — measure of closeness, also goodness of fit ≡ –2 ln(Gaussian likelihood)

❖ cstat/cash ≡ –2 ln(Poisson Likelihood)

❖ p-value — one-sided tail probability of a distribution

❖ Null distribution — what you expect in the absence of a signal
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1. Distributions
❖ Binomial — one or the other, with probability ρ // enclosed energy 

fractions

k of one out of a total of N, p(k|N,ρ) = NCk ρk (1-ρ)N-k

❖ Poisson — events occur randomly // photon counts

p(k| θ) = (1/k!) θk e-θ 

❖ Gaussian (aka Normal)— all summary statistics that have a 
sufficiently large sample

f(x;µ,σ2) = (1/σ√2π) e–(x-µ)²/(2σ²) 

❖ Gamma — continuous variable conjugate to Poisson

p(x;α, β) = βα/ Γ(α) ⋅ xα-1 e-βx , x≥ 0, α≥ 0, β≥ 0; Poisson for β=1 and α=k+1
!5
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1. Distributions (contd.)

❖ χ² — measure of similarity and distance between 
samples (what is the chance that separate Gaussian 
distributions together have a given χ²)

p(χ²|n) = (2-n/2/(n/2–1)!) (χ²)(n–2)/2 e–χ²/2  

∝ (χ²)(n/2–1) e–χ²/2  ≡  Gamma(χ²; n/2, –1/2)
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1. Distributions (contd.)
❖ tν — distribution of (µ̂-µ)/σ̂µ̂ when sample size N is ν+1 

❖ the ratio of Normal and √χ²

❖ is also Loretzian (when you set ν=1), Cauchy, Beta profile

p(t|ν) ∝ K(ν) ⋅ [ 1 + t²/ν]–(ν+1)/2 

K(ν) = ( [(ν-1)/2]! / [(ν-2)/2]! )/√νπ 

For ν≳7 the tν-distribution approaches a Gaussian.
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2.1 Basics of Bayesian Analysis

❖ Mathematical model of probability calculus

❖ Deals with specifying parametric models, and computing 
probabilities and updating them conditional on observed data

❖ Jargon: p(A|B) is the conditional probability that A is true given B.

❖ Axioms
❖ Product rule for "A and B": p(AB) = p(A|B) ⋅ p(B)

❖ Sum rule for "A or B": p(A+B) = p(A) + p(B) – p(AB)
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2.2 Consider Aperture Photometry
• Say fS and fB are the intensities 

of the source and background

• Measure counts:

• NS counts in the source 
region

• NB counts in background 
region which is r× source 

region area

• Goal: compute p(fS|NS,NB,r)

!9

NS

NB

NS ~ Poisson(µS=fS+fB) 

NB ~ Poisson(µB=r⋅fB)
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2.3 Coordinate transformations
NS ~ Pois(µS) and NB ~ Pois(µB), with µS=fS+fB and µB=r⋅fB 

The joint distribution of the parameters 

p(µS,µB|NS,NB,r) dµS dµB = p(fS,fB|NS,NB,r) J(µS,µB;fS,fB) dfS dfB 

J(µS,µB;fS,fB) =                                =                      = r 

p(µS,µB|NS,NB,r) dµS dµB = p(fS,fB|NS,NB,r) r dfS dfB
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∂μS/∂fS ∂μB/∂fS

∂μS/∂fB ∂μB/∂fB

1 0

1 r
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2.4 Bayes’ Theorem

p(AB) = p(A|B)⋅p(B) 

≡ p(B|A)⋅p(A) 

⇒ p(A|B) = p(B|A)⋅p(A)/p(B) 

p(θ|D) = p(D|θ) p(θ) / p(D) 

p(θ|D) ∝ p(D|θ) p(θ)

!11

p(µS,µB|NS,NB,r)  

= p(µS|µB,NS,NB,r) ⋅ p(µB|NS,NB,r) 

= p(µS|NS) ⋅ p(µB|NB,r) 

→ apply Bayes’ Theorem → 

∝ p(NS|µS)⋅p(µS) ⋅ p(NB|µB,r)⋅p(µB)
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(digression) Uncertainty Interval

• p(Θ|D) describes the uncertainty on Θ 

• Usually reported as 68% or 95% central intervals because 
they correspond to 1σ or 2σ for a Gaussian 

(always say what they are!) 

• For Bayesian credible intervals, no guarantee of good 
coverage properties (because of priors), unlike frequentist 
confidence intervals 

 (“the true value is contained 95% of the time for CIs 
calculated in this manner when the experiment is repeated”)
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(digression) Error Bars vs Limits

• Uncertainty intervals are not limits 

• Intervals are defined by the bounds that account for the 
specified area under p(Θ|D) — there are an infinite number of 
possible intervals 

• Limits are defined by a process of thresholding — you get an 
upper limit to the intensity by looking at how bright a source 
could have been and still not be detected
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2.5 Marginalization

   dµS dµB  

× p(NS|µS) 

× p(µS)  

× p(NB|µB,r)  

× p(µB)
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   dµS dµB  

× [µSNS e–µS / Γ(NS+1)] 

× [βSαS e–βSµS / Γ(αS)] 

× [µBNB e–µB / Γ(NB+1)]  

× [βBαB e–βBµB / Γ(αB)]

   r  dfS   dfB 

× (fS+fB)NS e–(fS+fB) /Γ(NS+1) 

× βSαS e–βS(fS+fB) /Γ(αS) 

× (rfB)NB e–rfB / Γ(NB+1)  

× βBαB e–βBrfB /Γ(αB) 

 ∫ 

p(µS,µB|NS,NB,r) dµS dµB  ∝ p(NS|µS) p(µS) ⋅ p(NB|µB,r) p(µB) dµS dµB 

Marginalize/Integrate over
uninteresting nuisance parameters
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2.6 conceptually simple, computationally complex

p(fS|NS,NB,r) dfS  

= r dfS  ∫ dfB (fS+fB)NS e–(fS+fB) /Γ(NS+1) ⋅ βSαS e–βS(fS+fB) /Γ(αS) ⋅ 

(rfB)NB e–rfB / Γ(NB+1) ⋅ βBαB e–βBrfB /Γ(αB) 

∝ dfS  ∑k=0:NS [Γ(NB+k+1)/Γ(NS-k+1)Γ(k+1)] fS(NS-k) e–(1+βS)fS 
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3. Monte Carlo

❖ If all else fails, use a computer with a good random 
number generator
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3.1 Bootstrap
❖ How to estimate the uncertainty within almost any set of measurements

❖ Steps: 

1. construct summary statistic

2. extract random sample of same size from original dataset and 
recompute summary statistic from Step 1

3. repeat Step 2 a large number of times and compute mean and variance 
of summary statistic

❖ Quick and easy

❖ Accurate, if sample in hand is a good representation of population (e.g., 
don’t try this with power-laws)
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3.2 Markov Chain Monte Carlo
❖ What is it?

❖ A method to quickly explore high-dimensional parameter spaces and obtain 
representative measures of parameter values and uncertainties

❖ Why do it?

❖ Robust, insensitive to starting conditions, easy to code

❖ How does it work?

❖ Compute the likelihood for given parameter values, get a new, randomly 
drawn value, and compare the new likelihood to the old one

❖ If it improves the likelihood, accept the new value and repeat the cycle

❖ If it does not improve the likelihood, accept with a probability equal to the 
ratio, else reject and get a new value
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3.2 MCMC (contd.)
❖ Metropolis: transition probability Jt between θa and θb is symmetric and reversible, 

Jt(θa|θb) = Jt(θb|θa)

❖ r = p(θ*|y)/p(θt–1|y) 

❖ Set θᵗ ← θ* with probability min(r,1), otherwise θᵗ←θt–1 

❖ Metropolis-Hastings: transition probability Jt does not have to be symmetric, but 
is instead included in the jumping rule so transitions remain symmetric and 
reversible
❖ r = (p(θ*|y)/Jt(θ*|θt–1)) / (p(θt–1|y)/Jt(θt–1|θ*)) 

❖ Gibbs: sample one parameter conditional on all the others, equivalent to jumps in 
one element of a vector

❖ Jt(θ*|θt–1) = p(θj*|θ–jt–1,y) if θ–j* = θ–jt–1, 0 otherwise

❖ etc.

❖ Adaptive MCMC, HMC, Ancillary-Sufficiency Interweaving, Down-Up MH
!19
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3.2 MCMC (contd.)
❖ Why does MCMC work?  Consider θa and θb such that p(θb|y) > p(θa|y)

p(θt–1=θa, θt=θb) = p(θa|y) Jt(θb|θa) #by Bayes 

= p(θa|y) [p(θb|y)/p(θb|y)] Jt(θb|θa) = p(θb|y) [p(θa|y)/p(θb|y)] Jt(θa|θb)  

= p(θb|y) Jt(θb|θa) r = p(θt=θa, θt–1=θb) 

∴ joint distribution of θt and θt–1 is symmetric, hence both have the same marginal distributions, 
so p(θ|y) is the stationary distribution of the Markov chain of θ.

❖ Convergence is guaranteed, but not at a specified number of iterations.

❖ Practical MCMC

❖ Run many chains, make trace plots, make scatter plots, make contour plots

❖ optimal acceptance rate is ≈20%, less for higher dimensions (more means you are taking steps 
that are too small, your sample will be highly correlated)

❖ compute effective sample sizes, Neff = N⋅ (1-ρ)/(1+ρ), where ρ is the lag-1 autocorrelation

❖ check for convergence: compute Gelman-Rubin R̂ statistic, the sqrt ratio of the combined 
within-chain (average of variances of each chain) and between-chain variance (variance of 
averages) to within-chain variance, should approach 1 if all chains converge
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3.2 MCMC in Sherpa
❖ stats, accept, params = get_draws(niter=) 

❖ Based on the BLoCXS analysis algorithm of van Dyk et al. 2001, ApJ 
548, 224

❖ only works with cstat/cash 

❖ set up data and model as you would for a regular Sherpa fit, then 
run get_draws.

❖ samplers: MetropolisMH, MH, PragBayes

❖ priors: default is to use flat prior between model min/max; use 
set_prior to associate specific models

❖ There is a thread:
http://cxc.harvard.edu/sherpa/threads/pyblocxs/

!21
VLK: CIAO Workshop Bologna, 2019 Sep 15

http://cxc.harvard.edu/sherpa/threads/pyblocxs/


4. Watch out
❖ asymptotic validity — be aware of the assumptions made to get easy 

analytical results (e.g., p-value for F-test, χ² as measure of goodness)

❖ convergence, stopping rules, effect of priors — always do sensitivity tests 

❖ overfitting — to avoid fitting fluctuations in the data, balance bias against 
variance

❖ p-values — measure of how far in the tail of a distribution the current 
observation is, not a proof of the validity of an alternative hypothesis, nor 
of the falsity of the null hypothesis

❖ Type I, Type II, Type S, Type M errors — false positive, false negatives, 
sign errors on weak effects, Eddington Bias

!22
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4.1 Warning: χ²scary plot #1: bias

[A. Siemiginowska]

If the likelihood is not appropriate, you may not get the best fit.

8Wednesday, April 13, 2011

VLK: CIAO Workshop Bologna, 2019 Sep 15 Aneta Siemiginowska

For counts data, χ² 
based estimates are 
invariably biased.

Goodness of fit and 
parameter error bars 
not calibrated for 
non-standard 
versions of χ² — data 
variance, Gehrels, 
Primini, etc.



4.2 Warning: p-values

• A p-value is how far out in the tail of a distribution a 
measured or computed value falls. 

• It’s the fractional area under the distribution that exceeds the 
specified value. 

• The smaller the p-value, the more extreme of a fluctuation is 
necessary for the underlying distribution to have generated it

!24
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Distribution of counts in the light curve binned at 0.5 sec

p=0.11

p=0.006 p=0.0015
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4.2 Warning: Hypothesis Tests
• Compare distributions by setting up competing hypotheses 

• Null hypothesis H0 is that both samples are drawn from the 
same distribution 

• Calculate a statistic from the data and compare to the 
expected distribution of the statistic.  If calculated value 
exceeds a critical threshold, you may reject — not disprove, 
but reject — the null hypothesis. 

• Important to decide on the statistic and the threshold before 
the experiment or observational study is conducted

!26
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4.3 Types of Error
❖ Type I — false positives, when you claim a detection over a 

background because of a fluctuation above some threshold

❖ Type II — false negatives, when you fail to detect an event 
because its response fell below the detection threshold

❖ Type M — an incorrect estimation of the size of the effect because 
large fluctuations are preferentially detected (cf. Eddington bias)

❖ Type S — an incorrect estimation of the sign of a weak effect 
because of fluctuations in the wrong direction
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 28 Kashyap et al 2010

4.3 Warning: Type I & II Errors
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Digression: get Upper Limit by controlling β
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4.3 Warning: Type S Errors
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Suppose you want to detect 
an effect λ≠100 at 2σ



Eddington, A.S., 1913, MNRAS, 73, 359, On a formula for correcting 
statistics for the effects of a known error of observation

Kashyap 2001, Power of wavdetect!30

4.3 Warning: Type M (Eddington)
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4.4 Warning: Kolmogorov-Smirnov
❖ Are two samples drawn from different distributions? 

❖ Computes cumulative distribution for both, then computes the p-value for 
the observed maximum distance between them 

❖ Alternative methods exist, but are usually narrower in applicability and not 
unique in higher D 

❖ Pros: easy to use, distribution-free p-values, unambiguous in 1-D, no 
restriction on sample size 

❖ Cons: prone to misuse (do not use as a way to estimate parameters), not 
very powerful, insensitive to differences near the ends, limited to 1-D 

❖ [https://asaip.psu.edu/Articles/beware-the-kolmogorov-smirnov-test]
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4.4 Warning: F-Test

!32
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–John von Neumann, via Enrico Fermi to Freeman Dyson

"With four parameters I can fit an elephant, and 
with five I can make him wiggle his trunk."



4.4 Warning: F-Test
❖ Did using a more complicated model make for a better fit?  Is adding an extra 

parameter justified?

❖ The F-Test looks at the change in χ² given the degrees of freedom and returns a 
p-value for how far in the tail of the null distribution the observed change is.  

❖ But it makes several regularity assumptions that precludes some obvious astro 
applications like determining whether a line exists in a spectrum (information 
matrix must exist and be differentiable):

❖ simpler model must be a proper subset of the complex model

❖ the simpler model cannot be at the boundary of the complex model

❖ The F-Test could underestimate true significance for emission lines (missing 
weaker ones), or find non-existent absorption lines
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4.4 Warning: F-Test
❖ See Protassov et al. 2002, ApJ 571, 545 for a "workaround" using 

posterior predictive p-value checks

❖ Basic procedure:

1.Simulate several datasets from simple model

2.Fit both simple and complex models to the datasets

3.Compute the statistic of interest and construct an empirical 
distribution

4.Compare measured value of statistic to empirical distribution 
and compute approximate p-value

!34
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Some good reads
❖ Larry Bretthorst (1988), Bayesian Fourier analysis, https://bayes.wustl.edu/glb/book.pdf

❖ Tom Loredo (1990), monograph on neutrinos from 87A, http://hosting.astro.cornell.edu/staff/loredo/bayes/L90-
LaplaceToSN1987A-scan.pdf

❖ Jogesh Babu & Eric Feigelson (1996), Astrostatistics, https://www.routledge.com/Astrostatistics-1st-Edition/
Babu-Feigelson-Morgan-Keiding-Van-der-Heijden/p/book/9780412983917 

❖ Larry Wasserman (2006), All of Non-Parametric Statistics, http://www.stat.cmu.edu/~larry/all-of-nonpar/ 

❖ Eric Feigelson & Jogesh Babu (2012), Modern Statistical Methods for Astronomy with R Applications, https://
astrostatistics.psu.edu/MSMA/ 

❖ Arnaud, Smith, & Siemiginowska (2011), Handbook of X-ray Astronomy, http://hea-www.cfa.harvard.edu/
~rsmith/xrayastronomyhandbook/

❖ Phil Gregory (2012), Bayesian Logical Data Analysis for Physical Sciences, https://www.cambridge.org/core/books/
bayesian-logical-data-analysis-for-the-physical-sciences/09E9A95DAE275F5B005676C71B542598 

❖ Andrew Gelman et al. (2013), Bayesian Data Analysis, https://www.routledge.com/Astrostatistics-1st-Edition/
Babu-Feigelson-Morgan-Keiding-Van-der-Heijden/p/book/9780412983917 

❖ Edward Robinson (2016), Data analysis for scientists and engineers, https://press.princeton.edu/titles/10911.html
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