Timing Analysis with Chandra

 Michael Nowak, MIT-CXC(\& thanks to Glenn Allen, Peter Ford, Herman Marshall ...)

See help threads at:
http://cxc.harvard.edu/ciao/documents threads timing.html

And keep an eye on:
http://space.mit.edu/CXC

Hey?! Isn't That RXTE's Job? Yes, but ... Chandra Can:

- Observe Crowded Fields
- Observe the 0.1-2 keV Energy Band
- Obtain $10^{-5} \mathrm{~Hz}-10^{-3} \mathrm{~Hz}$ (not since EXOSAT!)
- Faint Objects (Single Photons Matter!)

And It Can do msec Timing Too!

Normalizing Power as (RMS) ${ }^{\mathbf{2}} / \mathbf{H z}$:

$(\text { Noise Limit * } d f)^{1 / 2}=(2 / R)^{1 / 2}(1+B / R)^{1 / 2}(d f / T)^{1 / 4}$,
i.e., RMS limit in averaged frequency bin, where:

R = Signal Count Rate
B = Constant Background Count Rate
T = Total Observation Length
$d f=$ Width of Frequency Bin
Example: T = 40 ksec ,
RMS Limit $\sim 10 \% \mathbf{R}^{-1 / 2}(1+B / R)^{1 / 2}(d f / 1 \mathrm{~Hz})^{1 / 4}$
Reducing Background Can Really Help!

Fundamental Times: ACIS, Timed Exposure

- Frame Time:

$$
\begin{aligned}
& T(m s e c)=(41+0.040 * q) * m+2.84 * n+5.2, \\
& q=\# \text { of rows from readout } \\
& m=\# \text { of active chips } \\
& n=\# \text { of rows read }
\end{aligned}
$$

- Reality: Frame Time is Integer Multiple of 0.1 sec (0.2-10 sec) $+41.04 \mathbf{~ m s e c}$
- Caveat: Images are Transferred to Frame Store (Quasi-) Serially, so up to a 5*41.04 msec Delay Between Chips
- Event Times are Middle of Frame Time

Fundamental Times: ACIS, Timed Exposure

- Frames Take 41.04 msec to Transfer to Frame Store, so a Given Amount of (Uniform) Deadtime is Expected
- Charge Moved at $40 \mu \mathrm{sec} / \mathrm{row}$, which Gives the Potential for Very Fast Timing of Readout Streaks
- (Sources that bright will otherwise be difficult to deal with...)

Fundamental Times: ACIS, Timed Exposure

- Event Time is Terrestrial Time, Referenced to:

$$
\text { MJD = } 50814.0
$$

(January 1, 1998)
MJD $=$ Julian Date $-2,400,000.5$
$(T J D=$ MJD $-\mathbf{n} * 10,000$. Don't Use!')

- XMM: Same Reference MJD
- RXTE Referenced to:

MJD = 49353.000696574074
(January 1, 1994)
(fraction is ~ 1 minute, i.e. Terrestial Time vs. UTC)

- ASCA is Referenced to:

MJD = 48988.0
(January 1, 1993)
Check FITS Headers!

None of These Times are Barycentered! (Requires Orbital Ephemeris; axbary, fxbary)

- Useful Links for Understanding/Converting:
- NIST Time Glossary -
http://www.bldroc.gov/timefrea/
- Date Conversion Utility -
http://heasarc.gsfc.nasa.gov/cgi-bin/Tools/DateConv/dateconv.pl
- Look at ahelp file for axbary

Fundamental Times: ACIS, Continuous Clocking

- Rows are Read Out Every 2.85 msec
- Chips are Read in Parallel
- Time is Read Out Time, Not Arrival Time. (Read out delay from aim point, modulo dither, etc.) Tool (from G. Allen) to Correct This Almost Ready.
- Generalization to CC-Gratings Observation Should Be Straightforward
- 40μ sec row shift "deadtime" still applies

Fundamental Times: HRC-S

- HRC-I Wiring Problem Limits Time to $\sim 4 \mathrm{msec}$ on Average
- HRC-S Can Achieve 16μ sec Accuracy
- Faster Timing than ACIS, but more severe Telemetry Limits (184 cps), and Higher Backgrounds
- But, no Deadtime, and HRC-S is Linear Up to at Least 5 cps for a Point Source

Tools at Your Disposal:

- CIAO Tools: lightcurve, axbary, threads on filtering lightcurves, creating phase-folded spectra
- Data products can be further analyzed with XRONOS, IDL, S-Lang, ...
- More to be Developed. What Do Users Want?

Self-Promoting Example:

- lightcurve corrected with axbary, allowed comparison to previous observations
- Folded Spectrum Created with CIAO Tools, Following Threads
- 0 Background! $d f \sim 5 \times 10^{-5} \mathrm{~Hz}, \mathrm{RMS}>4 \%$
- Single photon events used to determine rapidity of eclipse, yielding limits on source size

Other Examples Have Included:

- Crab Pulsar (Easily Detected)
- RX J185635-375 (astro-ph/0204159): Strong Upper Limits to Pulse Fraction
- Important Caveat/Strong Suggestion: Bin on Integer Multiples of "Natural" Time Unit, Watch Out for Instrumental Time Scales (dither, etc.)

