Measuring effective equation of state of diffuse gas in galaxy clusters

from Chandra to X-ray Surveyor

Irina Zhuravleva KIPAC, Stanford University

P. Arevalo, E. Churazov, A. Schekochihin, S. Allen, A. Fabian, W. Forman, J. Sanders, A. Vikhlinin, N. Werner

X-ray Vision Workshop: Probing the Universe in Depth and Detail with the X-ray Surveyor Oct 6-8, 2015 Washington DC

Big Questions

How is the energy from central AGN partitioned between different feedback channels (e.g. bubbles, shocks, turbulence etc.)?

How is the energy from AGN dissipated in the ICM?

Radio-mode feedback can be best addressed in X-rays

AGN-driven perturbations: X-ray view

What is the nature of AGN-driven perturbations? What fraction of the AGN energy is in each type of perturbations?

Effective equation of state of perturbations

- Characterizes fluctuations relative to the mean value
- It does not reflect the true equation of state of the gas

Types of perturbations

isobaric

adiabatic

weak shocks, sound waves do not change gas S

 $\frac{\delta T}{T} = \frac{2}{3} \cdot \frac{\delta n}{n}$

isothermal

bubbles of relativistic plasma p variations at constant T

X-ray response of perturbations

isobaric: $(\delta f/f)_{soft} > (\delta f/f)_{hard}$ adiabatic: $(\delta f/f)_{soft} < (\delta f/f)_{hard}$ isothermal: $(\delta f/f)_{soft} \cong (\delta f/f)_{hard}$

X-arithmetic, Churazov et al. in prep.

Cross-spectra analysis

Power spectra of emissivity fluctuations in different bands: P_1, P_2 Cross-spectrum of fluctuations: P_{12}

One process or multiple? —> Coherence

$$C = \frac{P_{12}}{\sqrt{P_1 P_2}}$$

Which process dominates? —> Ratio $R = \frac{P_{12}}{P_1}$

Nature of perturbations in Perseus: inner r~3.5'

C and R for a mixture of processes

Nature of perturbations in Perseus: inner r~3.5'

Nature of perturbations in Perseus: ripples

1.1 1.2

1.3

04

0.5

0.6

0.7

0.8

0.9

1

Zhuravleva et al., in prep.

Nature of perturbations in Virgo/M87 cluster

central 14': dominated by isobaric "arms"

central 14', no arms, 5-10 kpc scale: ~70 % isothermal ~15 % adiabatic ~15% isobaric

on scales > 30 kpc -> isobaric

 $E_{pert}/E_{therm} \sim 5\%$

if cooling ~ heating => $t_{diss} \sim 5.10^7$ yr

supports AGN feedback model mediated by bubbles

Arevalo et al. 2015, submitted

Main limitation:

· Low number of counts, especially in hard band

X-ray Surveyor:

- large effective area
- high angular resolution
- -> reduce the Poisson noise
- —> probe small-scale fluctuations
- —> resolve point sources
- high spectral resolution -> direct information on V

Future with X-ray Surveyor: effective area + FoV

Poisson ~ 1/N_{phot}

X-ray Surveyor will probe fluctuations ~ 5 kpc even in hard X-ray band

Future with X-ray Surveyor: spectral + angular resolutions

X-ray Surveyor will spatially and spectrally resolve the tiniest structures

Future with X-ray Surveyor: spectral + angular resolutions

Sound waves or stratified turbulence?

X-ray surface brightness of clusters is peaked in the core => at some distance from the center we probe mostly tangential motions of gas

--- A. Variation of line centroid in tangential direction

B. Variation of line centroid in radial direction

if A < B => turbulent eddies are correlated in tangential direction and not in radial => stratified turbulence

Summary

Chandra:

- Cross-spectra analysis allows us to obtain the dominant processes responsible for the observed fluctuations in the ICM;
- Perseus, inner r~3.5': dominated by isobaric nature of perturbations on scales 8-70 kpc;
- Perseus, region with ripples: ~ 50% of the total variance is associated with isobaric fluctuations, ~30% with isothermal on scales 12-70 kpc;
- Virgo: dominated by isobaric arms, the rest of fluctuations mostly isothermal.

X-ray Surveyor:

- Large effective area and spatial resolution —> probe < 2 kpc scales in soft band and down to 4-5 kpc in hard band;
- High spectral and spatial resolution —> resolve internal structure of ripple-like fluctuations, proving independent probes of their nature and energetic;
- · Powerful physics lab with new capabilities .