Precipitation-Regulated Galaxies

G M Voit / Michigan State University

G M Voit

Fundamental Questions

What turns galaxies on and off?

G M Voit

color

What turns galaxies on and off?

G M Voit

color

Circumgalactic Conditions

Tumlinson+ 11 (COS-Halos)

G M Voit

G M Voit

Precipitation & Cluster Cores

Cold Triggering of AGN Feedback Cavagnolo+ 08

Core Entropy Index = $K_0 = kTn_e^{-2/3}$

G M Voit

A CONTRACT

Instability in a Thermally Balanced Medium

McCourt+ 2012, Sharma+ 2012

If the medium is kept in global thermal balance by feedback, then the threshold for formation of multiphase gas is:

 $t_{cool}/t_{ff} \sim 1$ in a box $t_{cool}/t_{ff} \sim 10$ in a spherical potential

... but see Meece, O'Shea, & Voit 2015

G M Voit

ANT A

Evidence for Precipitation

Voit & Donahue 2015; data: Cavagnolo thesis

Dependence of $L_{H\alpha}$ on min(t_c/t_{ff}) looks more like a steep ramp than a threshold.

Implies a very stiff black-hole feedback response that maintains $t_c/t_{\rm ff} \sim 10$ for most systems.

But there are outliers extending to $t_c/t_{\rm ff} \sim 50$.

Evidence for Precipitation

Voit & Donahue 2015; data: Cavagnolo thesis

Dependence of $L_{H\alpha}$ on min(t_c/t_{ff}) looks more like a steep ramp than a threshold.

Implies a very stiff black-hole feedback response that maintains *t_c/t_{ff}* ~ 10 for most systems.

But there are outliers extending to $t_c/t_{\rm ff} \sim 50$.

Cooling-Time Profiles Voit+ 2015, Nature

10¹¹ $2.0 < max(kT_{\chi}) < 10.0$ 10¹⁰ K_0 100t_{cool} (years) 10⁹ 30 no cooling 10⁸ 10 isothermal core conductive balance precipitating baseline 10⁷ ънH 100 10 1000 1 r (kpc)

Precipitation Threshold:

- 1. Use 250 km/s singular isothermal sphere for the stars.
- Use NFW halo with
 C₅₀₀ = 3 for the dark matter.
- 3. Calculate *t*_{ff}(*r*).
- 4. Multiply by 10.

Baseline: Voit+ 2005No Cooling: Voit+ 2002Conduction: Voit 2011

And the second second

Cooling-Time Profiles Voit+ 2015, Nature

Cooling-Time Profiles Voit+ 2015, Nature

Precipitation-Regulated Feedback

Gaspari+ 2012,2013,2014; Li & Bryan 2014a,b; Li+ 2015

A CONTRACT

Precipitation-Regulated Feedback

Gaspari+ 2012,2013,2014; Li & Bryan 2014a,b; Li+ 2015

G M Voit

Ser Contraction

Precipitation Cycles

Li+ 2015 (in press, ApJ, arXiv:1503.02660)

G M Voit

Toward Cosmological Implementation

Meece Ph.D. Thesis

ANT A

G M Voit

Precipitation & Quenching

G M Voit

Two Kinds of Massive Ellipticals

Werner+ 12, Werner+ 14

Single-Phase

30 kpc

Multiphase

NGC 5044

NCG 1399

Entropy Profiles of Ellipticals

Voit+ 15 (Apr 2015, ApJL), data: Werner+ 12,14

Single-phase ellipticals: $K \approx (5 \text{ keV cm}^2) r_{\text{kpc}}$

Multiphase ellipticals: $K \approx$ (3.5 keV cm²) $r_{\rm kpc}^{2/3}$

ANT A

Precipitation Threshold

Voit+ 15 (Apr 2015, ApJL), data: Werner+ 12,14

G M Voit

Precipitation Threshold

Voit+ 15 (Apr 2015, ApJL), data: Werner+ 12,14

G M Voit

Precipitation & Regulation

Regulation via Precipitation

Precipitation Threshold

$$n_e(r) \approx \frac{3kT}{10 t_{\rm ff}(r) \Lambda(T,Z)}$$

Enrichment increases cooling and triggers feedback that lowers CGM density

Regulation via Precipitation

Precipitation Threshold

$$n_e(r) \approx \frac{3kT}{10 t_{\rm ff}(r) \Lambda(T,Z)}$$

Precipitation Rate

$$\frac{\dot{M}_{\rm p}}{10} \sim \frac{\rho_{\rm CGM} r_{\rm c}^3}{10 t_{\rm ff}(r_{\rm c})}$$

Reducing CGM density reduces gas supply for star formation

Regulation via Precipitation

Precipitation Threshold

$$n_e(r) \approx \frac{3kT}{10 t_{\rm ff}(r) \Lambda(T,Z)}$$

Precipitation Rate

$$\dot{M}_{\rm p} \sim \frac{\rho_{\rm CGM} r_{\rm c}^3}{10 t_{\rm ff}(r_{\rm c})}$$

Abundance Saturation

Mass-Metallicity Relation

Voit+ 15 (July 2015, ApJL)

Stellar Baryon Fraction

Voit+ 15 (July 2015, ApJL)

G M Voit

And the second second

 $M_{BH}-\sigma_v$ Relation

Voit+ 15 (July 2015, ApJL)

G M Voit

G M Voit

Precipitation & X-Ray Surveyor

Resolving the Bondi radius in early-type galaxies requires Chandra-like optical quality and many photons.

ANT A

Driver 2: CGM Imaging at < 0.5 keV

ROSAT stacks of SDSS LRGs indicate that L_x - M_{halo} relation extends from cluster scales down to Milky Way scales

Requires Chandra-like resolution, large effective area, low background, soft X-ray sensitivity.

ANT A

What turns galaxies on and off?

ANT A