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» What are the progenitors?
» How are cosmic rays accelerated?
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Probing Mass Loss
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* SNe probe very recent mass
loss; SNRs probe mass loss
over Kelvin-Helmholtz timescale
for post-MS evolution.

- High sensitivity & spec. resol.
Type I1 Type Ib Type Ic needed for SN evolution study

and shells shell only no !l nor
no ! shell shells

- High sensitivity & spectral
resolution needed for SNRs

Patrick Slane Vision Workshop 7 October 2015



Supernova Types
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» Understanding the demographics of SNRs * Moments of brightness distribution relative
allows us to understand the progenitors, to emission centroid are different for core-
how they evolved, and how they exploded. collapse and Type la remnants
- Step 1: Core-collapse or Type la? - High resolution/area for distant SNRs

- This can be determined with good spectra,
or by identifying accompanying NS/PWN

- Are there other ways (e.g., for fainter SNRs?)
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Supernova Types
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» Understanding the demographics of SNRs * Moments of brightness distribution relative
allows us to understand the progenitors, to emission centroid are different for core-

how they evolved, and how they exploded. collapse and Type la remnants

- Step 1: Core-collapse or Type la? - High resolution/area for distant SNRs

- This can be determined with good spectra, * Fe-K flux/centroid is a diagnostic as well
or by identifying accompanying NS/PWN 9

- Are there other ways (e.g., for fainter SNRs?)
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Supernova Types
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» Understanding the demographics of SNRs
allows us to understand the progenitors,
how they evolved, and how they exploded.

- Step 1: Core-collapse or Type la?

- This can be determined with good spectra,
or by identifying accompanying NS/PWN

- Are there other ways (e.g., for fainter SNRs?)

SN1987A

Patnaude et al. 2015

Moments of brightness distribution relative
to emission centroid are different for core-
collapse and Type la remnants

- High resolution/area for distant SNRs

* Fe-K flux/centroid is a diagnostic as well

- Density structure of ejecta yields higher
Fe-K ionization states in CC remnants

Patrick Slane X-ray Vision Workshop 7 October 2015



SNR Dynamics and Shock Physics
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» Hydrodynamical simulations using realistic
ejecta composition and density profiles for
core-collapse and Type la models

- Follow heating and ionization; couple to
emission code to produce spatially-resolved
spectral predictions

- Include effects of cosmic-ray acceleration

Patrick Slane X-ray Vision Workshop 7 October 2015



SNR Dynamics and Shock Physics
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SN 1993j ejecta, Age = 500 yr; R = 0.3 Rg\r

* Line broadening constrains heating in

 High resolution spectra are required to shock/postshock region, and turbulence

determine velocities through Doppler motions

- Crucial for establishing 3D structure of SNRs

- Constrain explosion asymmetries » Thermal broadening depends on ion mass

_ : . =
* Determine mass/composition/motion of ejecta Heating/equilibration timescale

knots - Separate from turbulent component

(crucial for explosion physics)

Patrick Slane X-ray Vision Workshop 7 October 2015



SNR Dynamics and Shock Physics
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* Line broadening constrains heating in

 High resolution spectra are required to shock/postshock region, and turbulence

determine velocities through Doppler motions

- Crucial for establishing 3D structure of SNRs

- Constrain explosion asymmetries » Thermal broadening depends on ion mass
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* Determine mass/composition/motion of ejecta Heating/equilibration timescale

knots - Separate from turbulent component

(crucial for explosion physics)
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Asymmetries in SN Explosions

- total ejecta™.
velocity «

NS motion

Wongwathanarat et al. 2013 Hwang & Laming 2012

* NS velocities may result from a “tugboat” effect

from slower-moving ejecta residing near NS - Deeper searches for NSs within SNRs are

- Bulk of the ejecta motion is in opposite direction needed to investigate connection between

proper motions and ejecta asymmetries
- Prediction is thus that NS proper motion will be

anti-aligned with net ejecta momentum - Requires larger area at soft energies,
good angular resolution




Asymmetries in SN Explosions
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* NS velocities may result from a “tugboat” effect
from slower-moving ejecta residing near NS - Deeper searches for NSs within SNRs are
- Bulk of the ejecta motion is in opposite direction needed to investigate connection between

proper motions and ejecta asymmetries
- Prediction is thus that NS proper motion will be

anti-aligned with net ejecta momentum - Requires larger area at soft energies,
good angular resolution

 Cas A ejecta dynamics and apparent NS motion
seem to support this based on low-res spectra
and gratings spectra of some bright knots

Patrick Slane X-ray Vision Workshop 7 October 2015

- May also constrain NS masses and
connect w/ progenitor properties



EXpanSK)n N 3D « Coupled with measurements
of velocity (through spectra),
NI S AL P . expansion measurements
et 2007 - determine 3D structure of
“o. . SNejecta
- explosion asymmetries;
kicks, jet-driven explosions

P ~ - density distributions in
CSM and ejecta

o .+ Currently, Cas A expansion
~ measurements are limited
by off-axis PSF degradation

- XRS will provide high
resolution across entire
remnant

S Expansion measurements
- for RX J1713 are limited by
~ both off-axis PSF and

. Borkowskietal. 2014




EXpanSion in 3D « Coupled with measurements

of velocity (through spectra),
- ' , expansion measurements
G1.9+03 - | 2009 determine 3D structure of
- SN ejecta

- explosion asymmetries;
kicks, jet-driven explosions

- density distributions in
CSM and ejecta

* Currently, Cas A expansion
measurements are limited
by off-axis PSF degradation

- XRS will provide high
resolution across entire
remnant

* Expansion measurements
for RX J1713 are limited by
both off-axis PSF and

Borkowski et al. 2014




EXpanSion in 3D « Coupled with measurements

of velocity (through spectra),
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B. Williams (GSFC)

Magellanic Cloud SNRs

N103B

X-ray Surveyor
40 ks

Example: N103B in LMC

 Type la SNR similar to Kepler
- strong evidence for CSM interaction

» Chandra studies show evidence for




Magellanic Cloud SNRs

N103B X-ray Surveyor Athena+
40 ks 40 ks

B. Williams (GSFC)

Example: N103B in LMC

* Type la SNR similar to Kepler
- strong evidence for CSM interaction

» Chandra studies show evidence for
spectral variations on multiple scales

Flux (counts s~! keV-1)

l- Arcsecond resolution required to probe
spectrum on physically important scales.

Energy (keV)




Magellanic Cloud SNRs

N103B X-ray Surveyor Athena+
40 ks 40 ks
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Example: N103B in LMC

* Type la SNR similar to Kepler
- strong evidence for CSM interaction

» Chandra studies show evidence for
spectral variations on multiple scales

Flux (counts s-! keV-!)

» Arcsecond resolution required to probe
spectrum on physically important scales.
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Extragalactic SNRs

o - Samples at known distance provide probe of intrinsic
: differences between SNRs

- Probe properties for SNRs in arm/inter-arm/bulge regions

- Compare properties and demographics between galaxies
> Star formation rates > Metallicities > Masses

 For nearby galaxies, Surveyor 25" at LMC = 1” at 1.25 Mpc
can resolve most SNRs Examples:
o s Galaxy D (Mpc) Type
gR | - Compare XMM: 80% EER = 25" jiss 0.8 SA
© SNR candidates | NGCes22 05 B
O no SNRs b =oe - L, = 10%° erg/s = Rypx = 7 ct/ks [rgton 07 B

for middle-aged SNR spectrum

. . LMC =
M31 (with candidates, o = -0.86)
M31 (confirmed SNRs only)

133 (all, o= -0.76) —

SMC (a0 =-0.50) =—

Based on SNR size distribution
in LMC, many in nearby galaxies
Bl ] would provide spatially-resolved
spectral characterization with
Surveyor.

logN (>Ly)

Number

I
|5 arcsec @ 1 Mpc
I

- identify SNR types for much of

sample
e : - identify ejecta, nonthermal * size (o)
keV luminosity erﬁs'] H I _
0.3-8 keV luminosity (ergs”) emission, PWNe for many

Patrick Slane X-ray Vision Workshop 7 October 2015



Cosmic Ray Acceleration in SNRs

TSNS

* CR acceleration changes shock compression ratio

- temperature, density, and ionization of downstream
gas is modified

- modeling plasma properties self-consistently with
observed nonthermal emission is crucial

Flux (counts s-! keV-!)

- high spectral/angular resolution and large area
required to probe shocked CSM/ISM

Energy (keV)

Slane et al. 2015




Cosmic Ray Acceleration in SNRs
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* CR acceleration changes shock compression ratio
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- temperature, density, and ionization of downstream
gas is modified
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)

- modeling plasma properties self-consistently with
observed nonthermal emission is crucial

Flux (counts s-! keV-1)

o
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- high spectral/angular resolution and large area
required to probe shocked CSM/ISM ' Energy (keV)




Cosmic Ray Acceleration in SNRs

* Thin synchrotron rims constrain particle » Spectra indicate these structures have
diffusion and magnetic fields higher cut-off energies than other nonthermal
emission regions

» Magnetic “stripe” features in Tycho may be
signatures of instabilities or cascading

- Better spectra, and more examples, are
needed to understand formation process




Summary

Current studies are producing new constraints on a broad range of topics in
supernova physics. These demonstrate need for large collecting area with high
spatial and spectral resolution, as would be provided by X-ray Surveyor:

» Typing SNRs in external galaxies; producing modest spatially-resolved spectra
» Measuring expansion and line-of-sight velocities to obtain 3D mapping of ejecta
 Studying ion heating in shocks and turbulence scales in ejecta

* Identifying explosion asymmetries and connecting with neutron star properties

* Probing mass loss on scales of tens of years to K-H timescale for progenitor

» Obtaining high-quality spatially-resolved spectra for Magellanic Cloud SNRs

» Constraining cosmic-ray acceleration in supernova remnants



