X-ray Surveyor

and the

Spectroscopy of Supermassive Black Hole Outflows

Martin Elvis

Harvard-Smithsonian Center for Astrophysics

The need has long been obvious

Cornell University Library

arXiv.org > astro-ph > arXiv:astro-ph/9611178

Search or Article-id

We grate

Astrophysics

Science Driven arguments for a 10 sq.meter, 1 arcsecond X-ray Telescope

Martin Elvis, Giuseppina Fabbiano (Harvard-Smithsonian Center for Astrophysics)

(Submitted on 21 Nov 1996)

X-ray astronomy needs to set bold, science driven goals for the next decade. Only with defined science goals can we know what to work on, and a funding agency appreciate the need for significant technology developments. To be a forefront science the scale of advance must be 2 decades of sensitivity per decade of time. To be stable to new discoveries these should be general, discovery space, goals. A detailed consideration of science goals leads us to propose that a mirror collecting area of 10 sq.meters with arcsecond resolution, good field of view (>10 arcmin), and with high spectral resolution spectroscopy (R=1000-10,000) defines the proper goal. This is about 100 times AXAF, or 30 times XMM. This workshop has shown that this goal is only a reasonable stretch from existing concepts, and may be insufficiently bold. An investment of roughly \$10M/year for 5 years in X-ray optics technologies, comparable to NASA's investment in ASTRO-E or a SMEX, is needed, and would pay off hugely more than any small X-ray mission.

Comments: 20 pages, Latex, ngxo.sty file included Talk given at ``Next Generation X-ray Observatories'' Workshop, Leicester, England (June 1996)

Subjects: Astrophysics (astro-ph)

Cite as: arXiv:astro-ph/9611178 (or arXiv:astro-ph/9611178v1 for this version)

Because: Diagnostics!

High Resolution X-ray Spectroscopy has also long been obviously needed

New Century of X-ray Astronomy ASP Conference Series, Vol. 251, 2001 H. Inoue and H. Kunieda, eds.

Thermal Limit Spectroscopy as a Goal for X-ray Astronomy

Martin Elvis

Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge MA 02138 USA

Abstract.

The $R \sim 300-1000$ grating spectra from XMM-Newton and *Chandra* are a radical advance, allowing spectroscopic physics techniques to be applied to X-ray astronomy, revolutionizing a wide range of research. Ten years on these spectra will be routine, and higher resolution will be needed. I propose "Thermal Limit Spectroscopy" as the next natural goal for X-ray spectroscopy. This will open up new physics: plasma physics, velocity widths, Doppler shifts, line profiles, and absorption lines in photoionized plasmas. A resolution of R=3000-10,000 is required, and the technology is within reach.

State of the Art in X-ray AGN Winds

10 days (900 ksec) with Chandra HETGS @ R~400

Kaspi et al. 2001 Krongold et al. 2005

...

1 hour @ R ~ 5000 with X-ray Surveyor

Diagnostics

RESOLUTION

- Resolves ~all blends
- Weaker lines detectable \rightarrow more (n_e, T) diagnostics
- 60 km s⁻¹ \rightarrow thermal line widths resolved

•in collisional X-ray plasma

- Doppler shifts
- Turbulent velocities, T_{thermal} vs T_{ion}
- Curve of growth $\rightarrow n_{ion}$
- Resolves components seen in UV
- Needs excellent calibration:
 - wavelength/energy to small fraction of resolution (5%?)

Diagnostics need Area

Area Enables

AREA ENABLES

• Depth:

- 1 Msec gives to NGC3783-quality spectra at $f = 4 \times 10^{-14}$ cgs
- \rightarrow High z
 - Fe-K @ z>2 (6.4keV \rightarrow 2.1 keV)
 - OVII 21.6Å → 64.80Å
- \rightarrow Low Luminosity L<<L_{Edd}
- \rightarrow Weak Lines
- Speed:
 - → Large Surveys: M_•, L/L_{Edd}, ...
 - → 100s/year NGC3783-quality spectra of 10×fainter sources, $f = 10^{-12}$ cgs
 - \rightarrow Variability on short-timescales \rightarrow density, radius.
 - 1Ms on NGC3783 \rightarrow 250 spectra
 - Needs spacecraft agility: rapid slew/settle

THE BIG QUESTIONS

- How supermassive black holes work
- How SMBH grow
- How SMBH merge
- Accretion luminosity of the universe
- Effects on galaxies, cluster growth
- "Pollution" of the primordial gas

- > What is a quasar?
- Quasar evolution
- Runaway black holes
- Versus nuclear fusion (stars)
- Feedback
- Warm-Hot Intergalactic Medium

Outflows from Super-Massive Black Holes

WHY DO WE CARE?

- How supermassive black holes work
- How SMBH grow
- How SMBH merge
- Accretion luminosity of the universe
- Effects on galaxies, clusters
- "Pollution" of the primordial gas

- What is a quasar?
- Quasar evolution
- Runaway black holes
- Versus nuclear fusion (stars)
- Feedback
- Warm-Hot Intergalactic Medium

Outflows from Super-Massive Black Holes

6 ORDERS OF MAGNITUDE IN SCALE FOR AGN PHYSICS

Martin Elvis, September 2007

How do Supermassive Black Holes Work?

Is the physics of the Inner Structure of Quasars dominated by winds?

Just 4 Mechanisms

- 1. Compton scattering *electrons:* only at L=L_{Edd}
- 2. Line driving *atoms: force multiplier L>~0.05 L_{Edd}*
- 3. Dust driving-molecules, solids
- 4. Magnetic "slingshot"

Warm Absorber outflows (WAs)

Narrow UV lines: NAL

Narrow X-ray lines: WA

Warm Absorber outflows (WAs)

Even supersonic flows have narrow velocity structures

Martin Elvis. X-ray Vision, DC, 6-8 October 2015 melvis@cfa.harvard.edu

Where are they? Determines Mass/Energy outflow rates

Ultra-Fast Outflows (UFOs)

High ~0.1c velocities

- Somewhat controversial
 - E.g. Laha et al. (2014)
- $v > 0.1c \rightarrow \text{ origin at } <100 \text{ r}_g?$
- Present location = ?
- Could they be the BAL "dark" outflows?
- X-ray Surveyor has nothing to add?
 - Highly ionized
 - → No need for lower energy spectra?
 - Features are broad
 - \rightarrow No use for R=5000?

Ultra-Fast Outflows (UFOs)

Low Ionization, Low n_{ion} phases?

Chakravorty et al., 2009

Broad Absorption Lines (BALs)

Have 3 things in common with UFOs

1. High ~0.1c velocity outflows

Broad Absorption Lines (BALs)

...have complex narrow velocity structure *Why not UFOs too?*

10

8

Relative Flux

 \rightarrow R=5000 to see narrow components

...& have low ionization components *Why not UFOs too?*

 \rightarrow E<~2keV to see low ionization lines

Supermassive Black Holes' Effects on Galaxies = "Feedback"

Narrow Emission Line Regions (NELRs)

E.g. Active Galaxy NGC4151 [OIII]

Wind loses ³/₃ KE in ~20 pc ~0.3"

Narrow Emission Line Regions (NELRs)

Imaging X-ray Outflows: X-ray Calorimeter

Paggi et al., 2012

X-rays map interaction of wind ([OIII]), jet (radio) with Host galaxy ISM

Active Galaxy MRK573

Thermal regions: Temperature **Emission measure** Density Pressure (cf radio) Total energy Cooling time Shock speed Crossing time E-loss rate Coupling efficiency (~30% of jet power 0.05% of nucleus)

Narrow Emission Line Regions (NELRs)

X-ray Emission Line ratios pick out different mechanisms Photoionization (AGN). Thermal (Shocks?)

Active Galaxy MRK573

Narrow Emission Line Regions (NELRs)

Calorimeter: Many more emission lines; Kinematics

1 arcsec pixels are kinda large. Smaller pixel array at center? Good for bright sources too. Velocities $\Delta E=5eV$ is kinda large. 3000 km s⁻¹ @ 0.5keV. Centroid to 5% if good calibration.

Low Energy array with smaller ΔE ?

"Long Slit" grating spectra?

X-ray Surveyor

Desiderata for the

Spectroscopy of Supermassive Black Hole Outflows

Modest changes can make a disproportionate difference in science output

- Calibration: wavelength/energy to small fraction of resolution (5%?)
 - Doppler shifts
- Agility: rapid slew/settle enables large surveys of types of object
 C.f. Swift. Large samples little done since ROSAT
- Calorimeter:
 - Angular resolution: factor 2 gives 8× more NELRs accessible
 - *Pixel size*: central finer pixels (~1/2 PSF) uses full power of mirror
 - Lower particle background is ALWAYS good low surface brightness
- Another instrument? E.g. polarimeter –also photon hungry \rightarrow low E.

• Grating Spectroscopy at R~5000 → Physics of AGN Structure

- ultra-fast outflows/broad absorption lines, warm absorbers/narrow absorption lines

- Calorimeter Integral Field Unit → AGN Feedback Physics
 - bi-conical narrow emission line regions
- Modest changes can make a disproportionate difference in science output

X-ray Surveyor Opens a Large Discovery Space "100×"

- Imaging goes ~100 × deeper
- Surveying is ~500-800 x faster
- Spectra have ~200× #photons, 10× resolution elements
 - ~150× information content
 - new physics available

e.g. MRK590: complex narrow velocity structure in a UFO?¹ several low S/N lines: tantalizing

Clues from Intermediate Cases?

'Not-so-Ultra-Fast Outflows' 5000 – 10000 km s⁻¹ X-ray velocities

Tombesi & Cappi 2014, MNRAS, 443, L104

mini-BALs: High UV v_{out}, low FWHM

Diagnostics

RESOLUTION

- Resolves blends
 - 40% of features in NGC3783 are blends
 - UTA no longer unresolved
- Weaker lines detectable \rightarrow more (n_e, T) diagnostics
- 60 km s⁻¹ \rightarrow thermal line widths resolved in collisional X-ray plasma.
- Turbulence, T_{thermal} vs T_{ion}
- Curve of growth \rightarrow n(ion)

•Resolves components seen in UV

FIG. 5.—Curve of growth for *b*-values from 20 to 80 km s⁻¹ in steps of 20 km s⁻¹. Horizontal lines are for the observed values of absorption lines in the mean *HST* spectrum. (a) C IV; (b) N V ; and (c) Ly α .

$$b_{th} = \sqrt{2kT/m_p}$$

$$N_{ion}(cm^{-2}) = 1.3 \times 10^{20} (EW/f \lambda^2)$$

Diagnostics need Area

PHOTON HUNGRY

- R=5000 requires ~10× #photons as R=500
- X-ray Surveyor has
 - Gratings: ~8× efficiency
 - Mirror: ~30× area
- \rightarrow Same S/N in sources 25× fainter
- or 4% of the exposure time.

For absorption lines

- $\Delta E = 0.1 \text{ eV} @ 0.5 \text{ keV}$
 - $\Delta\lambda = 0.0044A$ @22A
- 10⁴ resolution elements/keV
- 100 counts each
- = 10⁶ counts/1keV wide spectrum
 - #photons = fate/hv
 - fate = flux × area × time × efficiency

Outflows from Super-Massive Black Holes WHY DO WE CARE?

- How supermassive black holes work
- How SMBH grow
- How SMBH merge
- Accretion luminosity of the universe
- Effects on galaxies, clusters
- "Pollution" of the primordial gas

- What is a quasar?
- Quasar evolution
- Runaway black holes
- Versus nuclear fusion (stars)
- Feedback
- Warm-Hot Intergalactic Medium

Supermassive Black Holes' Effects on Galaxies = "Feedback"

Narrow Emission Line Regions (NELRs)

