Studying Interstellar Dust Grain Composition with X-ray spectroscopic imaging

Lia Corrales MIT Kavli Institute

Collaborators

Javier Garcia (CfA), Randall Smith (SAO/CfA), Joern Wilms (Remeis), Norbert Schulz (MKI), Mike Nowak (MKI), Frederick Baganoff (MKI)

Dust Life Cycle

Jones & Tielens 1994, 1996

Big questions

- 1. What is **dust grain composition** in diffuse ISM?
- 2. Where does dust grow and how big can it get?
- 3. How does dust influence the **physics of the ISM**: star formation, feedback, and galaxy evolution?

Using bright X-ray point sources as beacons, we can probe the dust and gas properties of the cool phase Universe.

absorption

probes total metal column (dust + gas)

scattering

probes large end of the grain size distribution

X-ray Vision Workshop - October 8, 2015

Milky Way optical depth due to dust

Dust model used in this talk

no amorphous, iron needles, or low-filling factor ("fluffy") dust

X-ray Vision Workshop - October 8, 2015

Using bright X-ray point sources as beacons, we can probe the dust and gas properties of the cool phase Universe.

absorption probes total metal column (dust + gas)

scattering

probes large end of the grain size distribution

X-ray Vision Workshop - October 8, 2015

light scattered by dust **intermediate in line of sight** produces a scattering **halo image**

dust scattering mainly affects sub-arcmin resolution instruments

X-ray scattering is a diagnostic tool for ISM grain sizes

X-ray scattering is a diagnostic tool for ISM grain sizes

X-ray scattering is a diagnostic tool for ISM grain sizes

Scattering halo flux yields direct measurement of scattering cross-section

Cyg OB2 Legacy Survey . (Wright+ 2015)

 $\frac{F_h}{F_{ps}} = e^{\tau_{\rm sca}} - 1$

image credit: Jeremy Drake Cyg X-3 (HETG)

X-ray Vision Workshop - October 8, 2015

Scattering halo flux yields direct measurement of scattering cross-section

Cyg OB2 Legacy Survey . (Wright+ 2015)

 $\frac{F_h}{F_{ps}} = e^{\tau_{\rm sca}} - 1$

Cyg X-3

(HETG)

image credit: Jeremy Drake

X-ray Vision Workshop - October 8, 2015

Scattering halo flux yields direct measurement of scattering cross-section

Cyg OB2 Legacy Survey . (Wright+ 2015)

$$\frac{F_h^{obs}}{F_{ps}} = f_{cap} \ \left(e^{\tau_{\rm sca}} - 1\right)$$

image credit: Jeremy Drake

X-ray Vision Workshop - October 8, 2015

The scattering halo of Cyg X-3 supports several solutions, degeneracy might be broken with **energy resolved scattering halos**

X-ray Vision Workshop - October 8, 2015

The scattering halo of Cyg X-3 supports several solutions, degeneracy might be broken with **energy resolved scattering halos**

X-ray Vision Workshop - October 8, 2015

Corrales, L. R.

The scattering halo of Cyg X-3 supports several solutions, degeneracy might be broken with **energy resolved scattering halos**

X-ray Vision Workshop - October 8, 2015

Corrales, L. R.

Spectrum of dust scattered light should have features coincident with **absorption edge structure** from **constituent elements**

Simulated spectrum (micro-calorimeter)

Ratio of halo to source reveals dust spectral features

X-ray Vision Workshop - October 8, 2015

Approach 1: X-ray Scattering

- 1. Wide field of view is important
- 2. Need to image SB over several orders of magnitude

3. High resolution imaging

- avoid confusion (point source vs halo)
- probe deeper into sight line (dust closer to source)
- image fainter scattering echoes
- 4. Can we push to C-K edge?
 PAHs (2175 Angs) are lever-arm for many dust models

Using bright X-ray point sources as beacons, we can probe the dust and gas properties of the cool phase Universe.

absorption

probes total metal column (dust + gas)

scattering probes large end of the grain size distribution

X-ray Vision Workshop - October 8, 2015

X-ray Absorption Fine Structure (XAFS)

X-ray Absorption Fine Structure (XAFS)

X-ray Vision Workshop - October 8, 2015

Absorption edge fine structure is also dependent on imaging resolution and grain size

MRN dust

0.3 micron grains

Fe-L edge

GX 9+9 with X-ray Surveyor Gratings, exp=50.0 ks

X-ray Vision Workshop - October 8, 2015

We need lab astrophysics and scattering models

Use absorption cross-section to measure optical constants -> compute extinction

LAB Kortright & Kim (2000) van Aken & Liebscher (2002) Lee et al. (2009) Lee (2010) Costantini (e.g. 2013)

MODELS

Draine (2003) Hoffman & Draine (2015) Smith, Valencic, Corrales (in prep)

Approach 2: X-ray Absorption Fine Structure

- 1. We need to be able to observe **bright objects!!**
- 2. Gratings
 - mitigate pileup
 - high-resolution spectroscopy in the soft X-ray
- 3. Need high S/N, high resolution spectroscopy

What can X-ray scattering do for you?

1. Distance measurements to X-ray binaries

- variability
- --- CO and IR measurements will help

see Tiengo et al. (2010), Mao et al. (2014), Heinz et al. (2015),

2. Trace the metals (neutral vs hot phase)

- measure depletion
- determine metallicity in your plasma / gas of interest

see Gatuzz et al. (2014)

Fantasy questions

Dust absorption features from obscured, moderately redshifted AGN?

need high resolution soft X-ray spectroscopy

Absorption or scattering features from CGM?

need quasar-galaxy pairs or lensed quasars, larger effective area for dimmer objects, low NH

Scattering echoes from diffuse CGM or IGM dust?

need larger effective area, low background, high resolution see Corrales & Paerels (2012), Corrales (2015)

Summary

Using bright X-ray point sources as beacons, we can probe the dust and gas properties of the cool phase Universe.

absorption

probes total metal column (dust + gas)

scattering

probes large end of the grain size distribution

Distance measurements to X-ray binaries

Trace the metals