Chandra's Clear View of the Structure of Clusters

Hydra A Cluster (Kirkpatrick et al. 2009)

Craig Sarazin
University of Virginia

Bullet Cluster (Markevitch et al. 2004)

Cool Cores, Radio Sources, & Feedback

Perseus (Chandra)

Fabian et al. 2011

Radio Bubbles

X-ray Cavities

Perseus (Fabian et al. 2000)

Radio Bubbles X-ray Cavities Filled by Radio Lobes

Perseus

Radio (blue) on pressure structure map (Fabian et al 2006)

A2052 (Chandra)

Blanton et al. 2001

Radio Contours (Burns)

Other Radio Bubbles

Hydra A

MS0735.6+7421

McNamara et al. 2000 Abell 4059

Clarke et al. 2009

McNamara et al. 2005

Heinz et al. 2002

MKW3s

Mazzotta et al. 2002

Fabian et al. 2005

Morphology – Radio Bubbles

- Two X-ray holes surrounded by bright X-ray shells
- From de-projection, surface brightness in holes is consistent with all emission being projected (holes are empty of X-ray gas)
- Mass of shell consistent with mass expected in hole
- X-ray emitting gas pushed out of holes by the radio source and compressed into shells

Perseus

Fabian et al. 2000

Abell 2597

McNamara et al. 2001

Multiple Radio Bubbles

Perseus

Fabian et al. 2011

Abell 2597

Blanton et al. 2011

Hydra A Cluster

Wise et al. 2007

- X-ray cavities at larger distances from center
- No radio at high frequencies

Fabian et al.

- X-ray cavities at larger distances from center
- No radio at high frequencies
- Filled with very low frequency radio

Abell 2052

Blanton et al. 2011

Abell 262

327 MHz radio green Clarke et al. 2009

Abell 2597

327 MHz radio green Clarke et al. 2005

Filled with very low frequency radio

Hydra A Cluster

330 MHz radio green Lane et al. 2004

- X-ray cavities at larger distances from center
- No radio at high frequencies
- Filled with very low frequency radio
- Old radio bubbles which have risen buoyantly

Give repetition rate of radio outbursts

$$(\sim 10^{7-8} \text{ yr})$$

Fabian et al.

X-ray Tunnels?

Continuous channels in X-ray, with steeper radio spectra at large distances

Red = Chandra

Green = low frequency radio

Clarke et al. 2009

Entrainment of Cool Gas

A133 Fujita et al. 2002; Randall et al. 2010

- Columns of cool X-ray gas from BCG center to radio lobe
- Gas entrained by buoyant radio lobe?

Entrainment of Cool Gas

M87/Virgo Million et al. 2010, Werner et al. 2010

Temperatures & Pressures

In most radio bubbles:

- Gas in shells is cool
- Pressure in shells ≈ outside
- No large pressure jumps (shocks)
 Bubbles expand ≤ sound speed
 - ▶ Pressure in radio bubbles ≈ pressure in X-ray shells
- Equipartition radio pressures are ~20 times smaller than X-ray pressures in shells!?

Shocks Around Radio Bubbles

Some radio bubbles surrounded by shocks

→ supersonic expansion

X-ray Shells as Radio Calorimeters

Energy deposition into X-ray shells from radio lobes (Blanton et al. 2002;Churazov et al. 2002):

$$\frac{1}{\gamma - 1}PV + PV + \text{(shock energy)} = \frac{\gamma}{\gamma - 1}PV = (2.5 \text{ to } 4) PV$$
Internal bubble work to energy expand bubble

- E ≈ 10⁵⁹ ergs in Abell 2052, typical value
- Divide by repetition rate of radio (from buoyant bubbles) = radio jet kinetic power

Compare to Radio Luminosity

Radio emission is very inefficient

Can Radio Sources Offset Cooling?

Works in many cases, but perhaps not all

Feedback Cycle?

How Do Radio Sources Heat the Cooling X-ray Gas?

Enough energy, but how to get it into the cooling gas?

One possibility is sound waves and weak shocks from the radio source

Ripples in Perseus

Fabian et al. 2006

Ripples in A2052

Unsharp Masked Chandra Image

Unsmoothed Chandra Image

Blanton et al. 2008, 2011

X-ray Gas and Cooler Material

In some cases, association between X-ray filaments and filaments of cooler gas and dust (optical emission lines, CO, star formation)

Perseus

Fabian et al. 2011

Abell 2052

Blanton et al. 2011

Radio Bubbles and Shocks in Groups and Galaxies

NGC5813 Group

Randall et al. 2011

NGC4636

Baldi et al. 2009

Merging Clusters

MACSJ0717.7+3745

Ma et al. 2009

Cluster Mergers

- Clusters form by mergers
- Merger shocks heat intracluster gas

Cluster Merger Simulation (Ricker & Sarazin 2001)

Cluster Mergers

- Clusters form by mergers
- Merger shocks heat intracluster gas
- Mergers may accelerate relativistic particles

Radio Relics

Abell 3667 Röttgering et al.1997

Radio Halo

Coma Govoni et al. 2001

Cold Fronts in Mergers

Merger shocks?

No: Dense gas is cooler, lower entropy, same pressure as lower density gas

Abell 2142 (Markevitch et al. 2000)

Abell 3667 (Vikhlinin et al. 2001)

Abell 3667

Contact discontinuity, cool cluster cores plowing through hot shocked gas (Vikhlinin et al. 2001)

Merger Cold Fronts & Merger Shocks

Cold Fronts

1E0657-56

Markevitch et al. 2004

Abell 2146

Russell et al. 2010

Abell 85 South

Kempner et al. 2002

Merger Shock Fronts

1E0657-56 = Bullet Cluster

Markevitch et al. 2004

Abell 520

Markevitch et al. 2005

Double Merger Shock Fronts

Abell 2146 (unsharp mask)

Russell et al. 2010

Merger Kinematics

(Markevitch & Vikhlinin 2007)

Give merger Mach number M

- Rankine-Hugoniot shock jump conditions Density, temperature, or pressure jump $P_2/P_1 = 2\gamma/(\gamma+1) \mathcal{M}^2 + (\gamma-1)/(\gamma+1)$
- Stagnation condition at cold front
- Stand-off distance of bow shock from cold front

Find $\mathcal{M} \approx 2$, shock velocity ≈ 2000 km/s

Transport Processes – Thermal Conduction

(Ettori & Fabian 2000; Vikhlinin et al. 2001)

- Temperature changes by 5x
 in ≤ 5 kpc < mfp
- Thermal conduction suppressed by ~ 100 x
- Kelvin-Helmholtz and other instabilities suppressed
- Due to transverse or tangled magnetic field?
 - Is conduction generally suppressed in clusters?

Mergers: Test of Gravitational Physics

Bullet Cluster 1E0657-56

Image = galaxies

Red = X-rays = gas

Blue = lensing mass = gravity

Gas behind DM ≈ Galaxies

(Markevitch et al. 2004) Clowe et al. 2004)

Mergers: Test of Dark Matter vs. Modified Gravity

- Gas behind DM ≈ Galaxies
- DM = location of gravity
- Gas = location of most baryons
- Whatever theory of gravity, not coming from where baryons are

Require dark matter (not MOND)

Mergers: Test of Collisional Dark Matter

- Gas behind DM ≈ Galaxies
- Gas collisional fluid
- Galaxies collisionless particles
- Limit on self-collision crosssection of DM

→ σ/m (DM) ≤ 1 cm²/g < 5 cm²/g required for cores in dwarf galaxies

(Randall et al. 2008)

- Cold fronts in regular, cool core clusters
- Kinematics: lower Mach numbers

(Markevitch & Vikhlinin 2007)

- Cold fronts in regular, cool core clusters
- Kinematics: lower Mach numbers
- Due to gas sloshing due to passage of subcluster near core of main cluster

(Markevitch et al. 2001)

- Cold fronts in regular, cool core clusters
- Kinematics: lower Mach numbers
- Due to gas sloshing due to passage of subcluster near core of main cluster

Abell 1644

(Johnson et al. 2010)

- Cold fronts in regular, cool core clusters
- Kinematics: lower Mach numbers
- Due to gas sloshing due to passage of subcluster near core of main cluster
- One-arm spiral pattern toward subcluster often

Abell 2029 (difference image)

(Clarke et al. 2004)

Merger Shocks and Nonthermal Particles

Theory suggests relativistic particles (re)accelerated

- at merger shocks (radio relics)
- behind merger shocks (radio halos)

Merger Shocks and Nonthermal Particles

Chandra images support shock/radio connection

Summary

- Chandra high resolution observations have transformed our view of clusters
- Cool cores X-ray cavities, radio bubbles, and feedback
 - Low redshift analogs of high mass galaxy formation at high redshift
- Merging clusters, cold fronts, shocks
 - Physics of cluster formation, transport processes, and particle acceleration
 - Basic gravitational physics