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Accurate Determination of Mass Function and Clustering
of Dark Matter halos with N-body simulations
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Hydrodynamical Simulations of Galaxy Clusters

dark matter L= 0_00 - gas
N-body+Gasdynamics "
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Box size ~ 100 Mpc R R . - a “
Spatial resolution ~ a AT
few kpc ' 1Mpc ¢
Modern cosmological .
hydro simulations Rs0 is a spherical region within which the mean enclosed density is
include the effects of 500 times the critical density of the Universe
baryons (i.e., gas

cooling, star formation,
heating by SNe/AGN,
metal enrichment and
transport)

But, also remember the
limitations -e.g., a
single fluid
approximation!
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Radial profiles of X-ray emitting ICM
Simulations vs. Chandra X-ray Observations
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Nagai, Kravtsov & Vikhlinin
2007, ApJ, 668, 1

Cluster outskirts are
modelled remarkably well

l

A
~
- %
‘\“~..
-~
-~
-~
-

No cool core physics

AGN feedback, thermal conduction,
CRs, magnetic field
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Modern hydrodynamical cluster simulations reproduce
observed ICM profiles outside cluster cores (r>0.15 X rgg).
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Recent Advances at the Crossroads of
Cluster Astrophysics & Cosmology

Dark Energy Task Force (2006)

The CL technique has the statistical potential to exceed the BAO and SN
techniques but at present has the largest systematic errors. Its eventual accuracy
is currently very difficult to predict and its ultimate utility as a dark energy
technique can only be determined through the development of techniques that
control systematics due to non-linear astrophysical processes.
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Era of Precision Cluster Cosmology

Local (z<0.1) sample of 49 clusters + 37 high-z clusters
from the 400d X-ray selected cluster sample
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Testing non-GR theories of the Cosmic Acceleration
with Next Generation X-ray surveys

eROSITA (scheduled launch in 2013)
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C the Astro 2010 Decadal Survey ]
(astro-ph/0903.5320)

Normalized Growth Factor of
Density Perturbation, G(z)
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All-sky survey for 4yrs + targeted obs.
Science Goals: Study the LSS and Dark Energy
~100,000 clusters up to z~1.3
A~1500 cm? @ 1.5keV; O_,~25-40 arcsec
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Main Challenge

Calibration of Observable-Mass relations

Sim. clusters
«—
<«— Chandra clusters

Normalizations of the
model and observed Yx-
M relations are shifted
by ~10%

Weak lensing mass is
larger than X-ray mass

by about 10%, on
average.
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X-ray “pressure” = YX = gas mass x temperature
measured excluding cluster core regions

The Physics of Cluster Outskirts is the key!!




Missing Cluster Astrophysics #1
Gas Motions in Clusters

—
Major Merger
M~1-3 (transonic)

B Gas (bulk+turbulent) motions are
predicted to be ubiquitous in the ICM
m Drivers of gas motions
» Accretion/Mergers (on large scales)

» Energy injection from SNe/AGN (in
cluster cores)

4,

B Implications
» Hydrostatic mass modeling
» X-ray/SZE observable-mass relations

» ICM temperature and entropy profiles
» SZ power spectrum

» Metal distribution (e.g., by mixing)

» Particle acceleration

Observationally, we know very little about
the nature of gas motions in clusters!!




Non-thermal Pressure in Cluster Outskirts
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Gas motions due to incomplete virialization
are ubiquitous in ACDM clusters
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Bias in the Hydrostatic Mass
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Astrophysical Uncertainty in SZ power spectrum
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Gas Motions in Clusters Evolution of Gas Motions
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Non-thermal pressure due to gas motions is the dominant uncertainty for

interpreting the recent SZ power spectrum measurements by ACT, Planck, and SPT.
L. Shaw, D. Nagai, S. Bhattacharya, E. Lau, 2010,Ap], 725, 1452
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Missing Cluster Astrophysics #2
Cluster outskirts are very clumpy

Mock Chandra X-ray simulation
of a ACDM cluster
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Median profile for the sample
of 16 simulated clusters
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Hydrodynamical cluster simulations predict that most of the X-ray emissions
from cluster outskirts (r>rso0) arise from infalling groups from the filaments

D. Nagai & E. Lau, 201 1,ApJ, 731, 10 (astro-ph/ | 103.0280)




Suzaku X-ray measurements of cluster outskirts

PKS 0745-191

SUZAKU X-ray Obs.
George et al. 2009

Cluster Core
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Suzaku X-ray measurements of cluster outskirts
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The observed entropy profile is inconsistent with the
prediction of hydrodynamical cluster simulations.




Evidence for Gas Clumping in Cluster Outskirts
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Chandra observation of A133

R500 = 1Mpc

Vikhlinin et al. in prep.

A transition of the smooth state in the virialized region to a clumpy
intergalactic medium in the infall region outside of r = Rso0
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Missing Cluster Astrophysics #3
Non-equ:llbnum Electrons

I Il e

Tx=2keV, unrelaxed

Electron temperature is lower than gas
(or ion) temperature in the outskirt of
dynamically active clusters
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Rudd & Nagai, 2009
Chuzhoy & Loeb 2004, Akahori & Yoshikawa 2010
Wong et al. 2010, also talk by Helen Russell




New Frontier: Exploration of the
Virialization Regions of Galaxy Clusters

eROSITA (2013) m Cluster outskirt is a new territory for studying
the physics of cluster formation

» Important for understanding thermodynamic
and chemical evolution of clusters

% Cluster outskirts are turbulent and clumpy
filled with non-equilibrium electrons

» Critical for cluster-based cosmological tests
% Calibration of observable-mass relations

% Interpretation of SZ power spectrum

Chandra observation of gas
clumps in the outskirt of A133

R500 = 1Mpc




