Rotation of the Hot Gas around the Milky Way **Edmund Hodges-Kluck** Matthew Miller and Joel Bregman University of Michigan

Agenda

- Galaxy Halos
- OVII Absorption Lines in the RGS Archive
- Halo Model
- Halo Rotation?
- Remaining Issues
- Please see Matt Miller's poster for more on halo kinematics with OVII lines!

Galactic Hot Halos

Accreted Halo at $T_{vir} = few \times 10^6 K$ (200 kpc?)

Galactic fountain (4-5 kpc)

Mass, distribution, and kinematics of each component are important to understanding galaxy evolution

Galaxy halos have T ~ $10^{6.1}$ - $10^{6.4}$ K (and sometimes low metallicity), so the dominant lines are OVII and OVIII (0.57, 0.65 keV)

Instrument	Resolving Power at OVII(r)	Effective Area (cm ²)
XMM MOS	10	300
XMM RGS	320	45
Chandra LETG	400	15
Astro-H SXS	140	100
Arcus	2000	400

The Milky Way is the only *galaxy* halo where we can measure kinematics, but SXB is faint so we need absorption lines

Sample

- ~40 OVII absorption lines detected at z=0 towards background AGNs or halo/Magellanic Cloud XRBs (Nicastro+02, Fang+02, McKernan+04, Yao & Wang05, Fang+06, Bregman & Lloyd-Davies07, Yao+09, Fang+15)
- RGS data (more targets with high S/N)

Reduction/Fitting Protocols

Systematic shifts: <10-15 km/s <15-30 km/s >30 km/s

- Process every exposure with *rgsproc* from SAS v14.0.0 with KEEPCOOL=no, LAMBDABINWIDTH=0.02 Å, WITHDIAGOFFSET=YES, HELIOCENTRICCORR=YES, SUNANGLECORR=YES, USERSOURCE=YES (with SIMBAD RA/Dec). Do this 10 times to account for bin resampling.
- 2. Combine RGS1 spectra and responses with *rgscomb* and fit the stacked spectrum in XSPEC v12.9.0.
- Fit in the 21.0-22.0 A bandpass, ignoring an instrumental feature at 21.75 Å, with a power law + Gaussian or Lorentzian absorption line model fixed at the instrumental width.
- 4. Measure the Doppler shift of the line referenced to the best-fit Capella line centroid (accounting for radial velocity) for OVII.
- 5. We include a 15 km/s error term for the systematic error, which is dominated by asymmetry in the line-spread function near OVII.

Wavelength solution in Capella and HR 1099 agrees with laboratory wavelengths (21.602Å for Ovii) and LETG/HETG after subtracting stellar radial velocities.

Scatter in wavelength scale (~6 mÅ) is **strongly mitigated** by lots of exposures, which is also true for most quasar data.

Halo Model

- Miller & Bregman 2015 found that a spherical halo is consistent with the Henley & Shelton XMM Ovii/Oviii catalog.
- We use their density model

 $n(r) = n_0 (1 + (r/r_c)^2)^{-3\beta/2} \qquad n_0 r_c^{3\beta} = 1.35 \pm 0.24$

- We assume a Doppler b = 85 km/s of random motion in small cells (Cen 2012), and v_{LSR} = 240 km/s (Reid+2014)
- We impose constant v_r , v_{ϕ} (free parameters) and integrate along sightlines from the Sun to obtain model velocities

Best-fit parameters indicate prograde rotation and a lagging halo (but parametric fit is dominated by several points)

Accounting for intrinsic scatter (due to hydrodynamic flows) increases the uncertainty, but a rotating halo is preferred. Large dispersions lead to improbably low chi-square values.

Nonparametric tests also disfavor a stationary halo

The halo (or thick disk) contains a comparable amount of angular momentum to the Galaxy.

Systematic Offsets...

Mr	k	50)9

Reduction/fit option	Shift (km/s)
Keep/reject cool pixels	4
Heliocentric/sun angle corr	35
Simbad/proposal coords	6
0.01/0.02 A bin width	1
Stacking/joint fit	8
Fixed/free width	14
Bandpass (+/-2 A)	3

Changing various choices does not produce such offsets.

Probably a wavelength solution problem (only since SAS v13.0.0 is zero shift possible).

A constant offset only changes v_r (inflow/outflow).

Does the **extended** component rotate?

- Miller & Bregman 2015, Fang+2013, Henley & Shelton+2013, Gupta+13 favor an extended halo; Yoshino+09, Hagihara+10, Yao+09 favor a disky "halo".
- If **both** components exist, do they both need to rotate?

Summary

- The RGS wavelength calibration is now accurate to ~30 km/s when combining multiple observations of a single target
- We measured Doppler shifts in z=0 OVII absorption lines
- The absorbing material rotates, and has a lot of angular momentum.
- This is the first systematic kinematic measurement of the gas, but please see Matt Miller's poster for what we can do with a better instrument.

http://xmm2.esac.esa.int/docs/documents/CAL-TN-0030.pdf

	GR08	GR08s	GR12	GR12v	GR12vs
RGS1 o1	6 ± 8	-1 ± 6	5 ± 7	3 ± 6	1 ± 5
RGS2 o1	11 ± 9	-2 ± 7	10 ± 7	8 ± 7	1 ± 5
RGS1 o2	2 ± 6	0 ± 6	4 ± 4	3 ± 4	1 ± 3
RGS2 o2	5 ± 7	0 ± 6	5 ± 4	4 ± 4	1 ± 3

 Table 3: Summary

Line shifts in mÅ, errors are standard deviations.

GR08: Data from CP07

GR08s: Data from CP07, with Solar Angle correction.

GR12: This work without velocity corrections.

GR12v: This work with system and barycentre velocity correction.

GR12vs:This work with star+barycentre velocity and Solar Angle correction.

Gonzáles-Riestra (2012) http://xmm2.esac.esa.int/docs/documents/CAL-TN-0098-1-1.pdf

Gonzáles-Riestra (2015) http://xmm2.esac.esa.int/docs/documents/CAL-TN-0030.pdf

Mrk 509 proposal coords vs. SIMBAD

ID	Angular Distance
30720	2 arcmin
30609	0 arcsec
60139	4.9 arcsec

1 arcsec err → 2.3 mA error (Gonzáles-Riestra 2015)

This is 32 km/s error per arcsec offset at 21.6 Angstroms!!

The uncertainty in the wavelength is 4-5 mA, so the spectrum is much more forgiving at OVII

Name	Stacked RGS	Stacked LETG
	$(\mathrm{km}\ \mathrm{s}^{-1})$	(km s ⁻¹)
Capella	0 ± 11	1 ± 22
HR 1099	-7 ± 22	10 ± 41
Mrk 421	-69 ± 19	-70 ± 55
PKS 2155-304	-44_{-45}^{+42}	-6^{+71}_{-65}
3C 273	33_{-46}^{+41}	66^{+93}_{-82}

Projected heliocentric motion and sun angle corrections remove systematic wavelength shifts (Gonzáles-Riestra 2013)

The largest source of systematic error appears to be asymmetry in the line-spread function (LSF), the instrumental response to a δ -function

