CHANDRA SOURCECATALOG

Progress Report

Ian Evans On behalf of the Chandra Source Catalog Project Team

> Chandra Users' Committee Meeting October 13, 2011

Summary

- Current catalog version: 1.1; Released: 2010 Aug 10
 - 106,586 master source
 - Includes 104,628 ACIS-only, 1,034 HRC-only, 924 both ACIS and HRC
 - 158,071 source detections
 - Includes 152,296 ACIS, 5,775 HRC
 - 5,110 observations with at least one detected source
- Statistical characterization of rel. 1.1 is complete
- Team is working on algorithm development for rel. 2.0
 - Science/software team has developed a prototype source detection pipeline to validate new approach
 - Science team is working algorithm refinements for source properties analysis
 - "High-risk" items have largely been addressed or a path forward is believed to be understood

Science Highlights Since Last CUC Meeting

- Completed statistical characterization of rel. 1.1
 - Statistical properties of release 1 are available on the catalog web site
 - Paper describing the statistical properties of rel. 1.1 (Primini, F. A. et al.) was published in ApJS (see below)
- Updated public web site with latest user documentation and threads
 http://cxc.cfa.harvard.edu/csc/
- IPAC updated the NASA Extragalactic Database (NED) to include basic data for CSC release 1.1 sources
- Working algorithm development and prototypes for release 2.0
- Publications
 - CSC absolute astrometric error paper
 - Rots, A. H. & Budavári, T. 2011, ApJS, 192, 8
 - Catalog statistical characterization paper
 - Primini, F. A., et al. 2011, ApJS, 194, 37
 - Aperture photometry algorithm paper
 - Kashyap, V. & Primini, F. A. 2011, in preparation

Software Highlights Since Last CUC Meeting

- Released several archive and user interface updates to support rel. 1.1
- Continued developing prototype rel. 2 source detection pipeline including Sherpa Maximum Likelihood Estimator (MLE)
- Evaluated rel. 2 software infrastructure and began infrastructure work
- Managed pipeline operations in support of algorithm development

Catalog-Related Releases

CAT	3.2.6	22 Nov	CSCview add cross-match capability; CSC 1.1 web services updates (LimSens, CSC Sky, Xmatch)
CAT	3.2.6.1	4 Feb	LimSens security update
CSC Sky	1.2	15 Feb	DMZ-related updates
CAT	3.2.7	28 Jun	Sybase 15.5 updates

- Publications
 - The Sherpa Maximum Likelihood Estimator
 - Nguyen, D., et al. 2011, ASP Conf. Ser., 442, 517

	2010 Sep 01 -	- 2011 Feb 28	2011 Mar 01 – 2011 Aug 31	
	Number	% Non-CfA	Number	% Non-CfA
CSCview catalog browser initializations	314 /month	67%	381 /month	81%
VO cone searches*	1518 /month	80%	2727 /month	99%
CSC Sky in Google Earth	103K hits/ month	9252 visits/ month	128K hits/ month	2846 visits/ month

* Excludes 254K cone searches from a single non-CfA user in 2010 Dec and 4.6M cone searches from a single internal user in 2011 Jun

<u>Usage Statistics 2010 Sep 01 – 2011 Aug 31</u>

- Statistics for different interfaces are not directly comparable
- CSC Sky interface includes a significant mix of professional and nonprofessional usage; other interfaces are primarily professional usage
- Increasing number of CSC Sky page hits with an associated decreased number of visits suggests that the fraction of "real" usage is increasing relative to casual accesses
 - During the period 2011 Mar 01 2011 Aug 3, CSC Sky dropped off Google's "featured sites" list

Chandra Source Catalog Release 2.0

Comparison of Actual CSC Rel. 1.1 and Expected Rel. 2.0 Performance

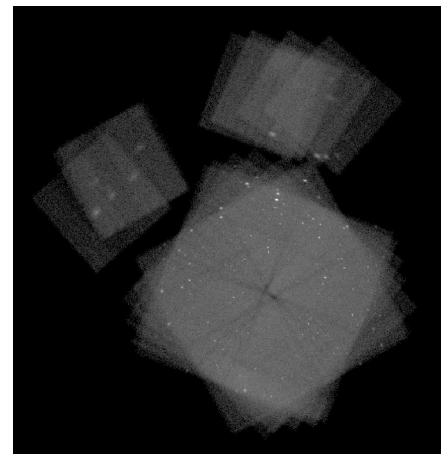
	Release 1.1	Release 2.0	
Number of Sources	106,586	~ 280,000	
<i>Limiting Net Source Counts (point source, on-axis)</i>	~ 10	~ 5	
Instrument Data Included	ACIS and HRC-I Imaging	Same	
Number of Observations	5,110	~ 6,500	
Source Detection Runs On	Single observation	Stacks of observations with the same instrument and pointings within 60 arcsec	
Source Sizes Included	\lesssim 30 arcsec	≲ 60 arcsec	

Enhancements Compared to Release 1.1

- Include latest calibrations
 - Updated photometric calibration with "new" QE, gains, contamination
 - New afterglow correction
 - ACIS sub-pixel resolution
- Significantly improve source detection process
 - Stack observations with same detector configuration and similar pointings (within 60") prior to source detection
 - Observations are corrected to common astrometric frame before stacking
 - Run wavdetect with "permissive" parameters followed by Sherpa MLE grading
 - Allows detection to faint limit (~5 counts on axis with 35 ks background) with possibly significant false source rate (later resolved by MLE)
 - Run wavdetect on single blocking factor data with $\sqrt{2}$ scale factor sequence
 - Generates better source regions and eliminates issues associated with merging multiple blocking factor runs, at cost of significantly increased memory usage (need ~16 GB to run)
 - Use Sherpa MLE to evaluate source candidate likelihood
 - Likelihood value for source determines whether source is definite, questionable, or should be rejected as false
 - Requires substantial "up-front" simulation work (unlike rel. 1 which required mostly post-facto characterization simulations)

Enhancements Compared to Release 1.1 (cont.)

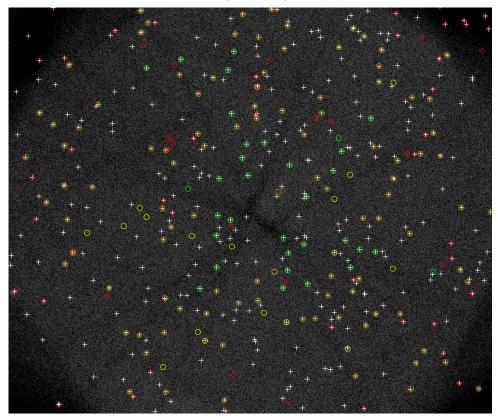
- Improve source detection background maps
 - Exclude exterior detector edges and adjacent ACIS BI/FI chip edges
 - Many rel. 1 false sources "detected" at these boundaries
 - Investigating new Voronoi tessellation/Delaunay triangulation background algorithm
 - Promising, but still evaluating performance in crowded fields
- Enhance aperture photometry algorithms
 - Use spectrally weighted ARF and apply energy-dependent ECF corrections
 - Simultaneously determine intensities of nearby/overlapping sources and background using a Bayesian formalism
 - Improve method for merging multiple intensity values for a source by using informative priors
 - Revise limiting sensitivity algorithm for consistency with rel. 2 approach
 - Approach based on MLE fit statistic similar to 2XMM
- Include upper limits from non-detections in temporal variability statistics
- Enhance software infrastructure
 - Redesign processing pipelines to support observation stacks
 - Update support infrastructure (e.g., automated processing, archive, database, and UI's) to support access to new properties and data products derived from observation stacks


Current Status

- Science team: working on release 2.0 tasks
 - Enhancing the source detection thread and Sherpa MLE algorithm
 - Enhancing rel. 1 aperture photometry and limiting sensitivity algorithms
 - Developing Voronoi tessellation/Delaunay triangulation background
 - Investigating algorithms for handling upper limits in time variability
 - Developed code based on MARX to generate multi-ObsId simulations
 - Inject point and elliptical Gaussian extended sources
 - Tag source photons for downstream analysis
- Software team: working on release 2.0 tasks
 - Developed prototype source detection pipeline including updated wavdetect and Sherpa MLE for functional testing and parameter tuning
 - Prototype works on simulations and observations included in CSC rel. 1
 - Defining pipeline architecture and requirements for processing system
 - Working modifications to automated processing (AP) infrastructure to run release 2.0 more efficiently
 - Established a new software build to support rel. 2.0
- Release 2.0 hardware
 - Upgraded existing "morris" cluster memory to support testing
 - Currently evaluating new hardware requirements for rel. 2.0 production

CSC Release 2.0 Source Detection

Enhanced wavdetect and MLE

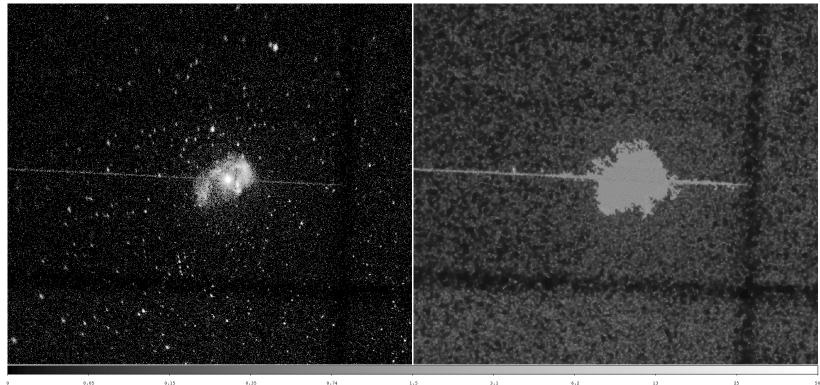

Stack of eight ACIS observations (ObsIds 02312, 02313, 02405, 02406, 08594, 08595, 08596, 09596) of the CDFS totaling 827 ks exposure

• Observation stacks must all have the same instrument configuration (i.e., cannot mix ACIS and HRC), and be co-pointed within 60"

Chandra Source Catalog

Chandra Users' Committee Meeting

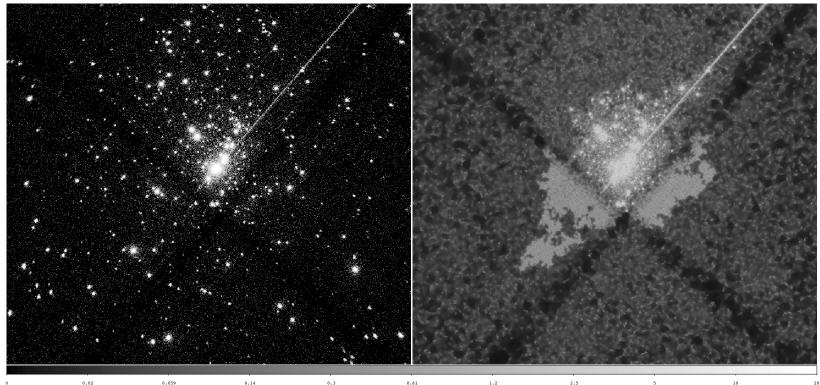
Enhanced wavdetect and MLE (cont.)


Sources in the central region of Chandra Deep Field South (stack of 8 ObsIds totaling 827 ks)

- White crosses indicate source positions from the published 2 Ms catalog (2008 ApJS, 179, 19)
- Source regions displayed as red diamonds are from CSC release 1.1
- Source regions displayed as green circles were detected in the broad, hard, or medium energy bands using the prototype CSC rel. 2.0 pipeline and have log likelihood ≥ 9 (~ questionable or better sources)
- Source regions displayed as yellow circles were detected in the soft energy band

CSC Release 2.0 Backgrounds

Voronoi Tessellation/Delaunay Triangulation Background

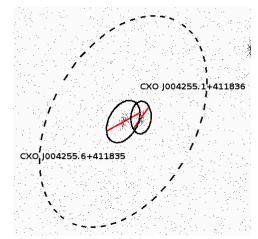

Left: Central region of Trumpler 16 (ACIS ObsId 06402); Right: Background map derived using VT/DT

- VT/DT background effectively identifies readout streak and enhanced emission background in the vicinity of Trumpler 16
 - The background can be used as input to wavdetect to improve the detection efficiency for point/ compact sources overlying the extended emission
 - The boundary of the enhanced emission background *may* be usable as a region definition for identifying extended emission components that *could* be included separately in rel. 2.0

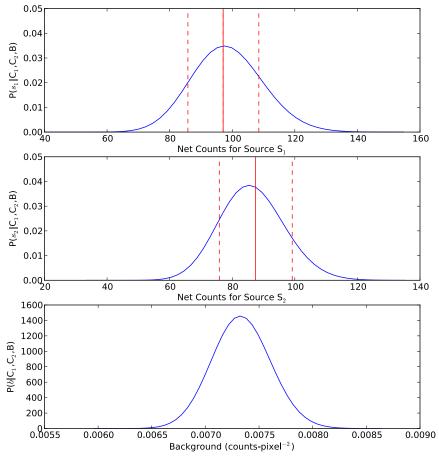
CSC Release 2.0 Backgrounds (cont.)

<u>Voronoi Tessellation/Delaunay Triangulation Background (cont.)</u>

Left: Central region of the Orion Nebula Cluster (ACIS ObsId 04395); *Right:* Background map derived using VT/DT


- VT/DT background is effective in areas with low-medium source density, but currently evaluating performance in crowded fields
 - Some point/compact sources appear to be included in the background, which may reduce their detectability

Aperture Photometry Algorithm Enhancements


Below, Left: Two nearby sources with overlapping source regions and surrounding background region included in CSC rel. 1 (ObsId 1912)

- The fractions of each source in each source region and the background region must be evaluated
 - For point sources these can be determined from the PSF models, but for extended sources must be estimated independently
- A Bayesian formalism is used to solve for all of the source and background PDFs simultaneously
- The new algorithm is more robust and easier to use than the rel. 1 algorithm that is included in the CIAO tool aprates

Below, Right: Normalized PDF's for the source intensities and background level

• The rel. 1 source intensities and confidence limits are shown in red

Chandra Source Catalog

Chandra Users' Committee Meeting

CSC-Derived CIAO Tools

- Rel. 1 resulted in the release of 14 new CIAO tools
 - These tools were originally developed to perform tasks necessary to construct CSC rel. 1, but were later deployed for users in CIAO 4.1–4.2
 - Several of these tools provided CIAO users with the capability to easily extract source properties for the first time since launch
 - Example source properties include aperture photometry fluxes, source variability statistics, and source extent measures
 - These tools were developed for the CSC, but are not catalog-specific
 - They can be used with CIAO users' own data
- Rel. 2 will provide additional new capabilities that could be released to CIAO users
 - The Sherpa MLE tool and the associated source detection/likelihood grading thread should greatly simplify and significantly improve source detection, especially for multiple observations split because of thermal constraints
 - The Voronoi tessellation/Delaunay triangulation background algorithm should simplify construction of background maps
 - Existing aperture photometry, source variability, and source extent tools will be enhanced for wider applicability and improved accuracy
- Like rel. 1, we expect that such CIAO tools could be delivered with or soon after the completion of rel. 2 of the catalog

Short Term Plans

- Rel. 2.0 development
 - Continue working rel. 2.0 algorithm and software development
 - Aim to begin rel. 2.0 processing no earlier than fall 2012
- Public Interfaces
 - External Interfaces
 - Continue discussions with outside agencies (CDS, HEASARC) aimed at providing access to a subset of rel. 1.1 catalog master source properties through those interfaces

Long Term Plans

- Catalog releases
 - Future releases
 - Simultaneous source detection across overlapping observations with different detectors and pointings (and thus very different local PSFs)
 - Detection and classification of very extended sources