

CXC

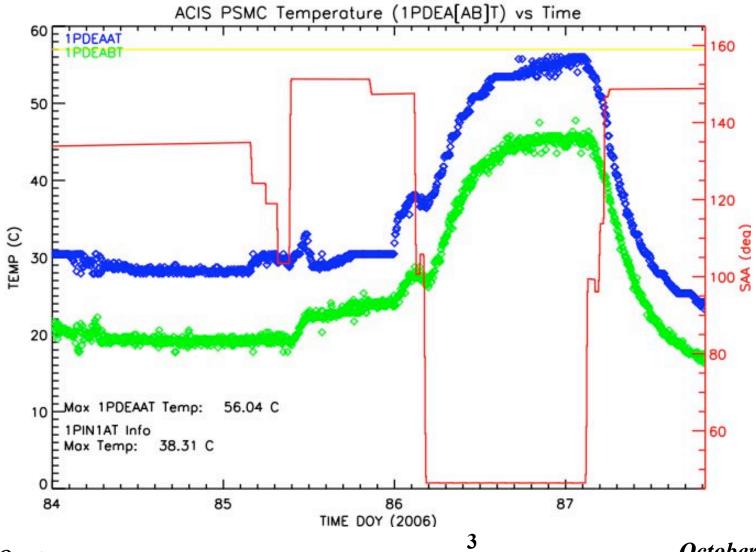
ACIS Changes Starting in Cycle 8

- 1) Selection of Optional CCDs
- 2) Revised Energy-to-PH conversion
- 3) VF mode and Higher Background Rates

ACIS Ops Team

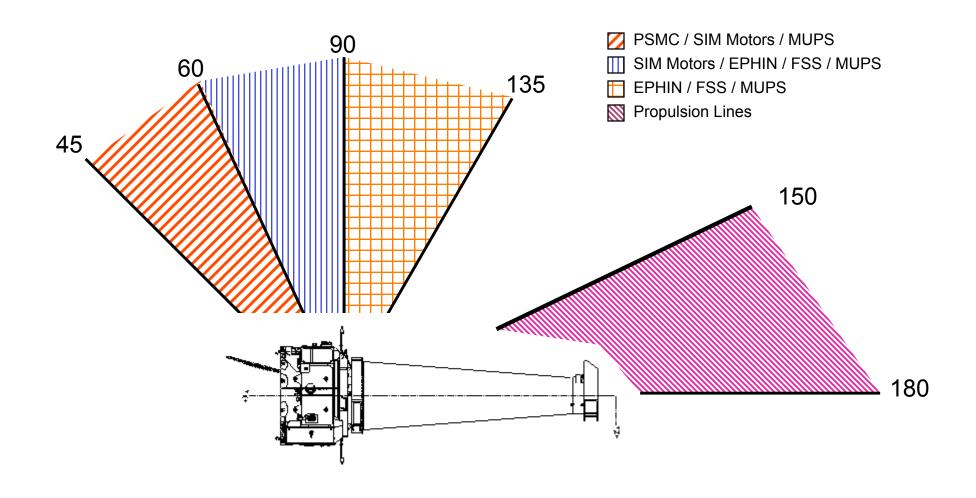
CXC

1) Specification of Optional CCDs for Cycle 8


- GOs are asked to identify CCDs which are not necessary for their science objective as *optional* CCDs
- These optional CCDs may be turned off for an observation for thermal reasons (we expect ~10 observations out of ~730 non-TOO ACIS observations to be affected)
- Observations with 6 CCDs operating at pitch angles less than 60 degrees for durations longer than 50 ks (either in one observation or consecutive observations) may be affected
- GOs still have the option to *require* that 6 CCDs are used in their observation, in that case the CXC will:
 - 1) Attempt to schedule the observation at pitch angles larger than 60 degrees
 - 2) If not, break the observation into pieces with cool attitudes scheduled around the hot attitudes
- The potential exists for an observation which could not be done, 6 CCDs are required, the pitch angle must be less than 60 degrees to satisfy other constraints, and the observation must be uninterrupted.

CXC

ACIS PSMC Temperatures During March 2006 Comet Observations


DEA Power Supply Side A and B in the Power Supply & Mechanism Controller

CXC

Constraints on Spacecraft Pitch Angles

CXC

2) Revised Energy to PH Conversion

- GOs request an energy filter by specifying a lower energy cutoff and a range, for example: a lower energy cutoff of 0.1 keV and a range of 12.0 kev
- ACIS OPs must convert this energy into a PH in ADUs to command the instrument
- Up to this point in the mission, we have been using one conversion for both the FI and BI CCDs
- Due to CTI effects, the energy that a given PH corresponds to varies across the CCD
- ACIS will now use lower energy cutoff conversions specific for the BI and FI CCDs, there is no change for the range conversion
 - If the lower energy cutoff is less than 0.5 keV, the BI or FI conversion will be used depending on the HRMA aimpoint (BI conversion for an ACIS-S observation, FI conversion for an ACIS-I observation)
 - 2) If the lower energy cutoff is larger than 0.5 keV, CCD-wide spatial windows will be defined to utilize the FI conversion for FI CCDs and the BI conversion for BI CCDs
- ➤ GOs specify energy filters as they always have done, the USINT scientists will assist in the creation of CCD-wide windows when necessary

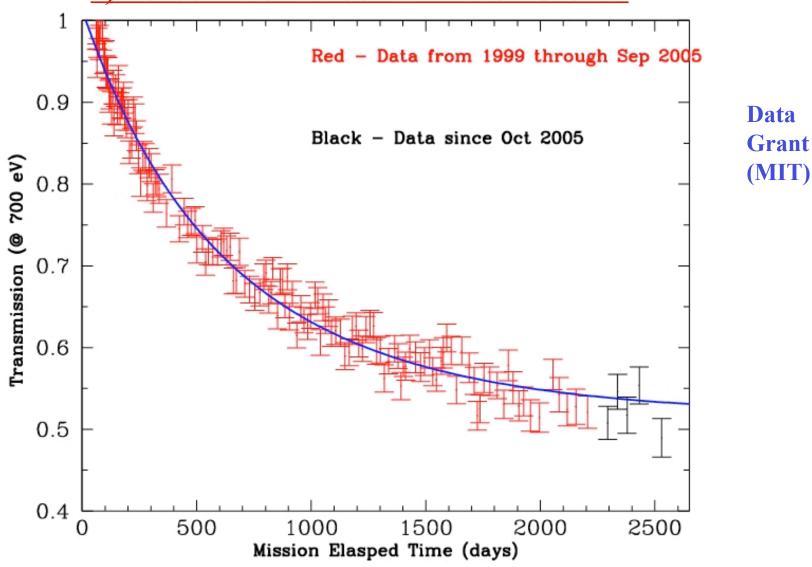
Comparison of New FI and BI Conversions to Existing Conversion

- Existing conversion rejected some events with the desired energies
- New conversion will err on the side of allowing some events into TLM which are below the desired energy

CXC

3) Increasing Background Rates and Very Faint Mode

- The quiescent background rate has increased as Solar minimum has arrived
- The use of Very Faint (VF) mode with 6 CCDs on and with *no* energy filter produces total rates which are close to the TLM saturation limit (68 cts/s), currently 55-65 cts/s from background alone
- GOs must specify an energy filter when using 6 CCDs in VF mode


Typical Background Rates in 2006

Configuration	Energy Filter	Rate
ACIS-I,S2,S3	0.08-15.0 keV	55 cts/s
12,13,S1,S2,S3,S4	0.08-15.0 keV	63 cts/s
ACIS-S	0.08-15.0 keV	65 cts/s
ACIS-I,S2,S3	0.08-13.0 keV	45 cts/s
ACIS-I,S2,S3	0.08-12.0 keV	42 cts/s
12,13,S1,S2,S3,S4	0.08-13.0 keV	50 cts/s
12,13,S1,S2,S3,S4	0.08-12.0 keV	45 cts/s

CXC

4) Bonus Material: Contamination Growth

