

Science Data Systems report to the Chandra Users Committee

Michael Nowak (SDS Deputy Lead) - on behalf of -Jonathan McDowell (SDS Lead) & The SDS Team

Chandra Users Committee Meeting, 17 October 2006

- SDS Status and Plans
- Releases and Staffing
- Chandra Source Catalog
- Sherpa/CHiPS
- Bad Pixel Files
- SAOSAC (Time Permitting)

Status summary

- Data system release DS7.68 June
- Resync pipeline with CIAO3.3
- HRC dead time file for L2
- Other infrastructure:
 - * Data system release Aug aspect upgrades
 - * Data system release Sep. optional chips

Status summary

- CIAO 3.4 Release with Serial CTI, Tools
- Catalog Working through science issues, preparing for production runs
- Sherpa/ChIPS
 - * Substantial progress, although interface not yet complete
 - * Working applications, science functionality under test
 - * Release plan: Beta release scheduled for Feb

Plans for 2007 and Beyond

- Merging observation scripts early 2007
- CIAO4 Beta Feb. 2007
- Catalog Spring 2007
- CIAO4 full (with Sherpa/CHiPS CLI) 2007
- Improved spectral extraction and PSFs (R&D)

CIAO 3.4

- Release early December
- Depends on Cal delivery of new ACIS CTI calibration, and assuming no further changes to algorithm
- Final testing underway
- Highlights:
 - * Support for serial CTI correction on BI chips
 - * HRC support tools
 - * PHA channel bug fixed

CIAO 3.4: ACIS CTI

- Cal is providing serial CTI data
- Infrastructure must allow users to get correct responses from CALDB in multiple cases, e.g.:
 - * No CTI Correction
 - * Parallel CTI Correction but no Serial CTI
 - * Serial and Parallel both Corrected
- Requires additional bookkeeping keywords in 10 tools, and proper responses generated for each possible combination
- New serial CTI algorithm in acis_process_events

CIAO 3.4: Dead area

- Up to 4 percent effect Cosmic rays removed onboard, but reduces effective area in each frame
- Correction algorithm implemented
 - * Being tested for 3.4 release
 - Extensible format for future similar applications (e.g., if Cal creates a "dead area image")
- Treat on statistical basis, with spatial dependence
- Optional parameter in mkarf; off by default

CIAO 3.4: HRC

- hrc_build_badpix and hrc_dtfstats provided for users
- Tools added to pipeline DS7.6.8 (June 2006)
- Time-dependent dead time correction for HRC; can significantly change after user filtering
- hrc_build_badpix allows users to make their own HRC bad pixel data; uses degap solution
- Without it, hrc_process events could improve degap photon coordinates, but badpix file would be incorrectly registered

SDS team

- Jonathan McDowell management, Catalog
- Mike Nowak management, instruments (pileup, timing), Gratings
- Frank Primini Catalog lead, source detection, HRC lead
- Margarita Karovska Testing, Catalog, PSFs
- Glenn Allen ACIS lead
- Dave Huenemorder Gratings lead, V&V
- John Davis Responses, ACIS, MARX
- John Houck Responses, instruments, Sherpa, ISIS
- Antonella Fruscione Docs and release support; merging observations
- Doug Burke Infrastructure (DM/regions), CHiPS lead, tools, Sherpa
- Aneta Siemiginowska Sherpa lead, stat. methods
- Nancy Brickhouse (part time: spectroscopy data); K Ishibashi (departing)

Catalog team

- DS science: Ian Evans, Pepi Fabbiano, Arnold Rots, Mike McCollough
- SDS science: Frank Primini, Margarita Karovska, Jonathan McDowell, Mike Nowak
- Science help: Dong-Woo Kim, Scott Wolk; forthcoming: John Houck, John Davis
- Software team: Janet Deponte Evans; team leads Kenny Glotfelty, Yulie Zografou, Dave Pummer and the development staff

Status summary

- Source catalog pipeline:
 - May, internal release 2.2: archive output files, perobservation pipeline prototype
 - * September, internal release 2.3: improved infrastructure and new Beowulf software
- Updating per-observation pipeline with revised requirements
- Merge pipeline definition nearly complete, implementation pending

Catalog status

- Source catalog:
 - * Requirements document revised, updated
 - * Characterization plan developed, evolving
- Identified prioritization for release 1 and descope; replaced PSF fitting by: aperture photometry for count rates, and moments analysis for extent
- Identified tasks to be completed before production
- Energy bands finalized, tested detection of sources with unusual spectra
- Comparing fluxes with COUP, CHAMP

L3 Tasks and Dependencies

ltem#	Task	Effort	R1 Lien	Dependencies
1	Develop scripts to summarize and display source output.	S	Y	None
2	Examine summary outputs for test OBSIDS.	S	Y	1
3	Unit-test new L3 Tools, especially dmellipse and mkpsfsize.	М	Y	None
4	Determine Optimum Energy Bands for Source Detection for various spectral models.	М	Y	None
5	Evaluate current variability tests.	S	Y	None
6	Characterize flux accuracy vs. counts, background, spectral shape.	S	Y	None
7	Characterize systematic errors in PSFs generated from SAOSAC/PSF_PROJECT_RAY vs. energy band, theta, phi, instrument, and ray density.	L	Y	4
8	Develop and test S/W to compute aperture corrections for single source and multiple, overlapping source regions.	М	Y	3
9	Develop and test S/W to compute aperture fluxes, including overlapping sources.	S	Y	3,8
10	Develop and test S/W to compute limiting sensitivity maps and sky coverage.	S	Y	None
11	Stage 1A characterization - real datasets, subdivided to provide a range of exposure/background. Characterize limiting sensitivity, sky coverage, false source rates, detection probability, completeness, source resolution efficiency, flux accuracy, absolute astrometric uncertainty.	L	Y	3,4,5,6,7,8,9,10
12	Moments analysis – develop and test S/W to estimate source size from image and PSF moments	М	Y	None
13	Generate background maps – develop algorithm for generating maps from data, includ- ing read-out streaks, and test on 100 OBSIDs.	M-L	Y	None
14	Characterize accuracy of background maps vs. exposure and instrument and for ex- tended sources of different size and intensity.	L	Y	4,13
15	Develop and test S/W to simulate sources with known flux, extent and variability and inject into L3 datasets.	M-L	Y	None
16	Stage 1B characterization – Stage 1A plus use of bgd maps, extent vs. flux, exposure, energy band, theta, and relative astrometric uncertainties.	М	Y	11,12,13,14,15
17	Spatial fitting - evaluate algorithms, develop and test S/W	M-L	N	15
18	Determine limiting flux vs. background for S/N derived from spatial fits.	М	N	17
19	Develop and test S/W for handling time-variable exposure in variability tests.	S-M	N?	15
20	Stage 2 characterization - Stage 1A&1B, plus 2-D fitting and time-variable exposure.	L	N?	16,17,18,19
21	Investigate alternatives to forward-fitting for computing fluxes.	М	N	None
22	Develop and test S/W for combining datasets for aperture photometry, spatial and spectral fitting.	L	Ν	?
23	Analyze gratings data.	?	N	?
24	Investigate vtpdetect, shapelets, etc. for complex and/or large extended sources.	?	N	?

Chandra Users Committee Meeting, 17 October 2006

Catalog tasks - before production

- Scripts to summarize output (done)
- Unit test new tools (done)
- Determine energy bands (done)
- Characterize systematic errors in PSF (to do)
- Software for aperture correction (done)
- Moments analysis (working)
- Background maps (working)
- Simulations (working)

Catalog tasks - during production

- Characterize flux accuracy
- Evaluate variability tests
- Characterize background map properties
- Stage I characterization:
 - * Limiting sensitivity, sky coverage, false source rate, detection probability, flux, and astrometric accuracy...

Catalog short term tasks

• Background:

SDS

- * First remove streak map
- * Remove sources and then apply filter
- * Current process still leaves traces of bright sources, experimenting with other filters
- Extent estimate:
 - * Working on algorithm to determine error on extent
 - * Revised rules for merging sources
 - * Needed for merging sources from different obsids
- Simulations
 - * Adopted simulation process from D-W Kim

Sherpa rewrite

- Infrastructure problems, robustness, GPL compliance, performance, maintainability
- New smaller code base, independent from CIAO
- Improved optimization methods
 - * LMDIF improved Levenberg-Marquardt
 - * MINIM simplex method (Sherpa I had license issue)
 - * New 'Neldermead' simplex under test
 - * Monte Carlo with improved convergence method
- Retain existing Sherpa concepts
 - * e.g., named components easier, e.g., for fitting many emission lines in gratings data

Sherpa rewrite - 2

- Improved scripting and plotting
- S-lang and Python interfaces on top of Python API
- Improved integration with Chips package
- Both Sherpa and Chips now modular, standalone
- User survey on interface:
 - * Strong support for command-line interface
 - * Survey and individual feedback confirm "two user types"
 - Most users want simple functionality, and find scripting interface difficult
 - Advanced users who are comfortable with programming-style approach and want the extra power

ChIPS rewrite

- New ChIPS based on VTK
- Line plotting
- Advanced capabilities:
 - * Select lines, curves and change their individual properties
 - * Define multiple layers, frames
- Consistent infrastructure with S-lang, Python APIs

Sherpa/ChIPS status

Sherpa/ChIPS Status

- 4 cycles of internal code release & science testing since last CUC
- Important functionality still being worked on for releases Oct 27, Nov 27
- Implemented new architecture with C++ algorithmic code, Python as application 'glue' and API interface.
- Implemented user interfaces in Python and S-lang.
- Command line interface not yet implemented

- Early demo at ADASS (today!)
 - * Feedback from other developers
- Pre-Beta demo at AAS (January)
 - * Early feedback from astronomers
- Beta release Feb. 2007 (TBR) Sherpa/ChIPS and tools with improved infrastructure
 - * Science functionality will be complete and robust
 - * S-lang, Python scripting, but no command-line interface
 - * Give exposure to, and get feedback from, advanced users
 - Continue to support old Sherpa in CIAO 3.4

CIAO4 release plan

- Full CIAO 4.0 release later in 2007
- Sherpa/ChIPS with command-line interface similar to existing Sherpa/ChIPS
- Data Model ASCII kernel
- CIAO 4.0 tool set (mostly further bug fixes, some enhancements) with infrastructure improvements
- Also maintain standalone Sherpa/ChIPS releases
 - Useful for non-Chandra community and other NASA projects needing a fitting package...
 - * ...in turn, useful for Chandra, which is often used as part of multi-wavelength campaigns

Bad Pixel Files

- Current Bad Pixel Files are our (SDS/DS/Cal) best assessment of what most users need most of the time
- Detector characterization and calibration are easier with limited, reasonable choices
- Customization might be desirable for advanced users
- Exploring providing two choices:
 - * Coarse, but simple, control
 - * Fine, but complex, control
 - * Possibly available on a CIAO 4.0 time scale, or later CIAO release

Bad Pixel Files

- Simple, coarse control with a 'parameter mask', e.g.,
 ="||||||||||||||
 - * 0 = no, 1 = yes, 2 = yes (but not adjacent pixels)
 - * controls the 32 current bad pixel status bits, e.g.,
 - status bit 2 = bias parity error
 - status bit 5 = events at CHIPX edges
 - status bit 14 = "hot pixels" for entire observation
 - * Would turn on/off that "category" for the entire observation
 - * Could provide examples of "common" settings

Bad Pixel Files

- Fine, complex, control with parameter usrfile="bad_pixels.txt", which contains columns:
 - * CCD_ID, CHIPX_LO, CHIPX_HI, CHIPY_LO, CHIPY_HI, TIME, TIME_STOP, ACTION (i.e., include/exclude)
 - * Would give full control, but necessarily be more complex.
- We are open to other suggestions, but again, there is value in having a limited number of "standard" options

- Progress made, but problems encountered. D. Jerius and T. Gaetz (Cal group) working. Recently:
 - * 30 packages modified; 45/56 ready for release
 - * MultilayerReflect program rewritten
 - Found numerical issues, recoded for stability
 - Reflectivity differences between Solaris, Linux
- I0 percent errors at some energies for some input parameters
- Scattering code bug found, evaluating
- Aperture propagation code rewritten

SAOSAC

- Work remaining:
 - * 11 packages still need work
 - * Complete work on scattering code
 - * Update surface-intercept code (6 underlying libraries)
 - * Port perl scripts (small job)
 - * Package up parameter data
 - * Resolve OSAC license issue

SAOSAC - Plan

- Phase 0.5: Provide version to run on Linux, but with possibly wrong answers
- Oct. 06, help with architecture and timing for L3
- Phase I: Run correctly on Linux
 - * Goal is Nov. 06; Ready for Level 3 source catalog
- Phase 2: Remove hard-coded /proj/axaf paths
 - * Ready to begin wrapping for user release
- Phase 3: Improve architecture, maintainability
- Phase 4: Port other engineering optics code to Linux for long term use by Cal & mission team