

#### **X-Ray Hierarchical Triples**

## A new channel to gravitational mergers

• Accretor: two compact objects in a close orbit



• **Donor:** star in a wide orbit



• Accretor: two compact objects in a close orbit



WD-WD WD-NS WD-BH NS-NS NS-BH BH-BH

• **Donor:** star in a wide orbit



• Accretor: two compact objects in a close orbit



To merge in a Hubble Time...or not!

• **Donor:** star in a wide orbit



• Accretor: two compact objects in a close orbit



• **Donor:** star in a wide orbit



Giant or mainsequence

• Accretor: two compact objects in a close orbit



• **Donor:** star in a wide orbit



In a wideenough orbit.

#### Why consider them?



#### Because they *may be* there!

### Why consider them?

- Most young high-mass stars are in binaries, hierarchical triples, or quadruples.
  (Moe & Di Stefano 2018)
- The "multiplicity factor" is > 2. (e.g., Sana et al 2014)
- There are scenarios in which the third star survives.

## Why consider them?

- Accretion by one or both members of the inner binary makes the system detectable pre-merger. For example, via binary selflensing;
  - D'Orazio & Di Stefano 2018a, 2018b.
- Angular momentum can be drained from the inner orbit, decreasing the time to merger.
- The compact objects can gain mass and may become transformed.

How to consider them cautiously

- Craft the inner binary.
- Select a donor mass.
- Select an initial orbital separation such that the donor does not fill its Roche lobe as a subgiant.
- Start with a core mass of 0.2 solar masses.
- Evolve the core, changing the radius, mass-loss rate, and total mass with each time step.

#### How to consider them?

- Y of winds is channelled toward inner binary.
- (1 Υ) escapes system, carrying specififc angular momentum of outer orbit.
- β<sub>2</sub> of incoming mass is retained by M<sub>2.</sub>
- $\beta_1$  (1- $\beta_2$ ) is retained by  $M_1$
- The rest of the mass exits the system carrying the specific angular momentum of the inner binary.

#### How to consider them?

- If the donor fills its Roche lobe, determine whether a common envelope will ensue. If so, angular momentum is drained from both orbits. We do not permit mergers, even though Nature might.
- If mass transfer is stable, evolve the system until the donor exhausts its envelope.

#### How to consider them?

• Run many simulations, altering key parameters.











![](_page_17_Figure_0.jpeg)

#### 8 R. Di Stefano

Table 1. Numbers of events per 33,333 triples

| $v_1$ | $v_3$ | κ    | $N_{< 0.5  \tau(0)}$ | $N_{< 0.1  \tau(0)}$ | X-WD<br>↓<br>X-Ia | X-WD<br>↓<br>X-NS | X-WD<br>↓<br>X-BH | X-NS<br>↓<br>X-BH | NS-NS<br>↓<br>BH-BH | WD-WD<br>↓<br>NS-NS | WD-WD<br>↓<br>Ia-Ia |
|-------|-------|------|----------------------|----------------------|-------------------|-------------------|-------------------|-------------------|---------------------|---------------------|---------------------|
| 0.00  | 0.00  | 0.50 | 5282                 | 2790                 | 618               | 361               | 93                | 889               | 98                  | 18                  | 36                  |
| 0.50  | 0.50  | 0.50 | 5911                 | 3090                 | 721               | 400               | 82                | 1000              | 102                 | 21                  | 36                  |
| 1.00  | 1.00  | 0.35 | 6321                 | 2742                 | 709               | 475               | 52                | 1033              | 82                  | 22                  | 27                  |
| 1.00  | 1.00  | 0.50 | 6853                 | 3538                 | 801               | 498               | 101               | 1217              | 109                 | 16                  | 37                  |
| 1.00  | 1.00  | 0.75 | 7408                 | 4368                 | 929               | 490               | 108               | 1287              | 137                 | 25                  | 43                  |
| 2.00  | 2.00  | 0.50 | 9024                 | 4469                 | 912               | 718               | 68                | 1419              | 110                 | 30                  | 20                  |
| 2.00  | 0.00  | 0.50 | 5369                 | 2798                 | 662               | 389               | 77                | 930               | 82                  | 22                  | 28                  |
| 0.00  | 2.00  | 0.50 | 8923                 | 4344                 | 873               | 693               | 91                | 1430              | 123                 | 35                  | 35                  |

#### Special conditions are not needed.

Implications (examples)

• Additions to the merger rates. Theoretical work (including population synthesis starting with the correct distributions of primordial-multiple's properties) and observations will determine the relative contributions.

• New models for Type Ia supernovae.

#### Tests (examples)

- HMXBs with wide-orbit companions.
- X-ray triples.
- Binary self-lensing.
- Low-mass BH mergers.
- Electromagnetic signatures accompanying mergers.

### **Hierarchical X-ray Triples**

- An important addition to our study of accretion processes.
- Disk studies can extend to circumbinary disks and minidisks. (analogy with double AGN candidtaes).
- May enhance gravitational merger rates. This removes pressure from binary-only models.
- Provide new models for Sne Ia.
- Accretion and dynamics must be combined.

# Is the accretor in this X-ray binary itself a compact binary?

#### How do compact binaries form and merge?

![](_page_23_Picture_1.jpeg)

![](_page_24_Picture_0.jpeg)