

Evolution of magnetized WD binaries to Type la Supernovae

Department of Astronomy, Kyoto University

Contents

2. The SSXB model

- When $M_{donor} > M_{WD}$ mass transfer proceeds on a (sub)thermal timescale at a rate $\sim 10^{-7} 10^{-6} M_{\odot}/yr$, so that the accreted H and He can stably burn on the surface of the WD (Van den Heuvel et al. 1992).
- Appear as supersoft X-ray binaries (SSXBs)

Constraints on the SSXB model

- The donor star during mass transfer
 - 1E0035.4-7230, $P_{orb} = 4.126$ hr, M₂<0.6 M_{\odot}(Schmidtke et al. 1996)
 - CAL 87, $P_{orb,i} = 5.7$ hr(Naylor et al. 1989), $M_{2,i}=0.63$ M $_{\odot}$, $M_2=0.34$ M $_{\odot}$ (Oliveira & Steiner 2007)
- X-ray luminosity (Di Stefanoet 2010a,b; Gilfanov & Bogdán 2010) of SSXBs
 - observation results < theoretical results

 $L_{WD,nuc} = \epsilon_H X \dot{M}$

Constraints on the SSXB model

• The optical properties of possible surviving companion stars after SNe Ia

SNe la	M_V or V	References
SNR0509-67.5	M _∨ = 8.4	Schaefer and Pagnotta (2012)
SN1572	M _∨ ≥ 9.5	Ruiz-Lapuente et al.(2004); Kerzendorf et al.(2012a,b)
SN1006	M _∨ ≈ 4.9	Gonzalez Hernandez et al.(2012)

Constraints on the SSXB model

- Low-mass donor stars are required!
- However, in traditional models, mass transfer is driven by magnetic braking, at a rate too low to allow stable burning
- Possible solutions
 - Increase the mass transfer rate
 - Increase the burning efficiency at a given accretion rate

Magnetic confinement

- A considerable fraction (≥10%) of WDs are magnetized (polars and intermediate polars)
- Strong magnetic fields may confine the accreted matter within the polar cap, so that the accretion rate per unit area is higher than in spherical accretion case
- This may enable stable burning even at low mass transfer rate
- Indeed the average mass of WDs in IPs (~0.88 M_☉, Yuasa et al. 2010.) is higher than in CVs (~0.6 M_☉, Lasota et al. 1989), suggesting possible mass growth

Conditions for magnetic confinement

The WD can confine the accreted matter at the polar caps without the envelop expansion

$$B \ge 9.3 \times 10^{7} \left(\frac{R_{\rm WD}}{5 \times 10^{8} cm}\right) \left(\frac{P_{b}}{5 \times 10^{19} dyne/cm^{2}}\right)^{7/10} \left(\frac{M_{\rm WD}}{M_{\odot}}\right)^{-1/2} \left(\frac{M_{\rm WD}}{10^{-10} \rm M_{\odot} yr^{-1}}\right)^{-1/2}, G \ge 0.3 \times 10^{7} (\frac{R_{\rm WD}}{5 \times 10^{19} dyne/cm^{2}})^{-1/10} (\frac{M_{\rm WD}}{M_{\odot}})^{-1/2} \left(\frac{M_{\rm WD}}{10^{-10} \rm M_{\odot} yr^{-1}}\right)^{-1/2}, G \ge 0.3 \times 10^{7} (\frac{R_{\rm WD}}{5 \times 10^{19} dyne/cm^{2}})^{-1/10} (\frac{M_{\rm WD}}{M_{\odot}})^{-1/2} \left(\frac{M_{\rm WD}}{10^{-10} \rm M_{\odot} yr^{-1}}\right)^{-1/2}, G \ge 0.3 \times 10^{7} (\frac{R_{\rm WD}}{5 \times 10^{19} dyne/cm^{2}})^{-1/10} (\frac{M_{\rm WD}}{M_{\odot}})^{-1/2} \left(\frac{M_{\rm WD}}{10^{-10} \rm M_{\odot} yr^{-1}}\right)^{-1/2}$$

Model calculations

• SSXB + magnetic confinement

3. Results

Porb,f VS. M2, f, R2 VS. g,

My vs. T2

M_V (mag)

Other considerations

• How exactly(how long, how extent) the magnetic field of WDs confine accreted matter their polar caps?

 Calculated M_v can be real values of the survived companion stars? (SN ejecta may affect the MS companion(Liu et al. 2012; Pan et al. 2012)

4. conclusion

• Observation results require low-mass donor stars. Classical models cannot reproduce lower enough mass SSXBs for observations

Considering the magnetic confinement models . We use polar-like WD binaries to calculate the evolution process of SSXBs, WDs → SNe Ia.

• The low mass SSXBs in our model may be the progenitors of those observed particular SNe Ia with high Mv.

THANK YOU