20 year Long-term O/IR lightcurve of A0620-00

Charles Bailyn and Tolga Dincer Yale University

(plus dozens of observers and students

over the decades)

P Thurse

R. Hynes 2000 ...

A0620-00: the "typical" low mass BH transient

Matilski et al. 1976

A0620-00: the "typical" low mass BH transient

Neilsen, Steeghs & Vrtilek 2008

McClintock & Remillard 1986

A0620-00: the "typical" low mass BH transient

$$f = \frac{PK^{3}}{2\pi G} = \frac{M_{BH} \sin^{3} i}{(1 + M_{2/M_{BH}})^{2}} \leq M_{BH}$$

A0620-00 *P* = 7.7... hours *K* = 425 km/s *f* = 3.1M_o

Disk Instability Mechanism (DIM)

- Key to the demographics and evolution of transient LMXBs.
- Quiescence: M_{disk} < M_{*} so material piles up in the disk, and accretion onto compact object is very low.
- As disk gets denser and heats up, a threshold is passed (generally associated with ionization) and the viscosity greatly increases, leading to much greater M_{disk}.
- Outburst: Disk "flushes" onto the accreting object.
- Complexities
 - Irradiation
 - Non-disk accretion flows
 - Propagation of heating and cooling flows

SMARTS ANDICAM Observations

- Optical+IR imager
- Optimized for queue observing
- 1998-2002 on Yale 1m
- 2003-present on 2MASS 1.3m

LMXB Observations

- Near nightly observations:
 - A0620-00
 - GRO J1655-40
 - GX 339-4 Buxton+ 2012
 - GRS 1915+105 (K only) Neal+ 2007
 - 4U1543-47
 - SAX 1819-2525 (V4641 Sgr) MacDonald+ 2014
 - GRS 1124-68 (Nova Mus '91) Wu+ 2016
 - Neutron stars: Aql X-1, Cen X-4

A0620-00 20 year light curve

Micro Jy

A0620-00 20 year light curve

Micro Jy

Micro Jy

A0620-00 20 year folded light curve: Total flux

A0620-00 20 year folded light curve: Non-ellipsoidal flux

phase

Pure ellipsoidal model Cantrell et al. 2010

Pure ellipsoidal model Cantrell et al. 2010

A0620-00 color-brightness

- Star redder than non-ellipsoidal flux
- Non-ellipsoidal flux is redder when brighter.

A0620-00 color-brightness

- Star redder than non-ellipsoidal flux
- Non-ellipsoidal flux is redder when brighter.
- Non-ellipsoidal flux likely non-thermal
- Activity in the active quiescent state possibly from jet...
- Known to have short timescales

Jets in A0620 in quiescence

Dincer+ 2018

Conclusions thus far...

- O/IR activity generally increases during quiescence
 - Frequency and intensity of quiescent "active" phase increase
 - Significant night-to-night changes in non-ellipsoidal activity
 - Stochastic overall activity level changes on annual timescales
 - Clear trend on decadal timescales
- Orbital signature of non-ellipsoidal flux can show dramatic changes
- Non-ellipsoidal flux trends *redder* when brighter likely dominated by non-thermal emission
- Hypothesis: several light sources contribute to non-ellipsoidal light
 - Disk (traditional interpretation)
 - Irradiation of secondary??
 - Much activity likely due to non-thermal ("jet") emission