Probing the Inner Regions around Accreting Compact Objects

Javier García

California Institute of Technology Dr Karl Remeis Observatory

> Chandra Workshop on Accretion in Stellar Systems Cambridge, MA—Aug 10, 2018

Research Team

HEAD 14th Division Meeting, Chicago, IL, Aug 2014

Modeling Relativistic Reflection

The relxill model: Combines ionized reflection spectra from xillver (Garcia & Kallman 2010), with the relativistic blurring code relline (Dauser et al. 2010)

 10^{3}

<u>Model parameters:</u>

Reflection fraction Photon index High energy cutoff Iron abundance

Research Team

HEAD 14th Division Meeting, Chicago, IL, Aug 2014

The Hard State of GX 339-4

García et al. (2015b)

Disk and Corona Evolution

Simultaneous fit of relativistic reflection revealed changes in both the inner radius and coronal temperature

García et al. (2015b)

Controversy on the Disk Truncation

Controversy on the Disk Truncation

The 2017 Failed Outburst of GX 339-4

- Signatures of reflection detected in all the NuSTAR exposures
- Broad (relativistic) reflection required in the brightest spectra
- Inner-radius consistent with small truncation (Rin ~ 2.4 Rg)

García et al., in prep.

The RXTE Archive of BHBs

NASA ADAP16: ~15,000 **RXTE** spectra with PCA (3-45 keV) and HEXTE (20-250 keV) for ~30 BHB with ~1 ks exposures

The Fe K line Profile across States

1000 Same Fe K profile for different accretion states PCA Count Rate (Cts/s/PCU) m4: tbabs*smedge(diskbb+nthcomp) 1.06 HR=0.8 HR=0.5 1.04 This suggest that the Ratio (Data/Model) 100 disk has reach the ISCO before it makes 1.02 the transition 1.00 0.98 10 Energy (keV) 100.2 0.40.60.80 Hard Color (8.6-13.0)/(5.0-8.6) keV

Navin Sridhar et al., in prep.

The RXTE Archive of BHBs

NASA ADAP16: ~15,000 **RXTE** spectra with PCA (3-45 keV) and HEXTE (20-250 keV) for ~30 BHB with ~1 ks exposures

XTE J1752-223: Hard-state spectra with over 100 million counts (eq. 300 ks exposure)

García et al. (2018b)

The Hard State of XTE J1752–223

García et al. (2018b)

The RXTE Archive of BHBs

NASA ADAP16: ~15,000 **RXTE** spectra with PCA (3-45 keV) and HEXTE (20-250 keV) for ~30 BHB with ~1 ks exposures

Research Team

HEAD 14th Division Meeting, Chicago, IL, Aug 2014

Summary

- Reproducibility is one of the main principles of the scientific method
- •The **systematic** and **consistent** analysis of the reflection spectra using the vast **RXTE** archive will provide a panoramic view of black hole behavior while significantly improving spin measurements
- •The abundance of **RXTE** data allows to **track the evolution** of physical parameters throughout a complete outburst cycle

"You know how excited I am about our work -- keep it up!" --Jeff McClintock