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A new method to model X-ray sattering fromrandom rough surfaesPing Zhao and Leon P. Van SpeybroekHarvard-Smithsonian Center for Astrophysis60 Garden Street, Cambridge, MA 02138 U.S.A.ABSTRACTThis paper presents a method for modeling the X-ray sattering from random rough surfaes. An atual roughsurfae is (inompletely) desribed by its Power Spetral Density (PSD). For a given PSD, model surfaes withthe same roughness as the atual surfae are onstruted by preserving the PSD amplitudes and assigning arandom phase to eah spetral omponent. Rays representing the inident wave are reeted from the modelsurfae and projeted onto a at plane, whih approximates the model surfae, as outgoing rays and orretedfor phase delays. The projeted outgoing rays are then orreted for wave densities and redistributed ontoan uniform grid where the model surfae is onstruted. The sattering is then alulated by taking the FastFourier Transform (FFT) of the resulting distribution. This method is generally appliable and is not limitedto small sattering angles. It provides the orret asymmetrial sattering pro�le for grazing inident radiation.We apply this method to the mirrors of the Chandra X-ray Observatory and show the results. We also expetthis method to be useful for other X-ray telesope missions.Keywords: X-ray sattering, random rough surfae, X-ray mirror, X-ray telesope, Chandra X-ray Observatory1. INTRODUCTIONThe study of sattering from random rough surfaes goes bak at least to Rayleigh in 1887,1 and has beeninvestigated by many physiists and engineers. The problem has been the subjet of numerous books, inludingthe lassi \The Sattering of Eletromagneti Waves From Rough Surfaes" by Bekmann and Spizzihino2and ountless researh papers.3 Many people have also studied X-ray sattering at grazing angles as part of thissubjet. This problem is even more diÆult beause of the short wavelength (ompared to the sale of the surfaeroughness) and the small angle between the wave propagation diretion and the surfae. Most approahes inthe literature make the approximation that the sattering angle is muh smaller than the inident grazing angle.Some of the treatments use the approximation that the surfaes are suÆiently \smooth" so that a low orderexpansion in the surfae height errors is adequate, and onsequently are limited in their appliations. Many ofthe approahes an not obtain the sattering asymmetry around the diretion of speular reetion (satteringtowards vs. away from the surfae). These approximations are not adequate for many of the appliationsinvolving X-ray mirrors.This new study of the entury old problem is motivated by our diret involvement of the evaluation ofthe X-ray mirror performane aboard the Chandra X-ray Observatory (CXO) { the NASA's third great spaeobservatories now have been suessfully operated for three years and have brought us fruitful sienti� resultswith many exiting disoveries. A major ahievement of the CXO ompared to previous X-ray missions is itsunpreedented spatial resolution (< 0:500 FWHM). This is mainly due to the design and manufature of itsX-ray mirrors. These mirrors are the largest, most preise grazing inidene optis ever built. At 0.84-m longand 0.6 { 1.2-m in diameters, the surfae area of eah mirror ranging from 1.6 to 3.2 square meters. They werepolished to the highest quality ever ahieved for any X-ray mirrors of this size. The surfae roughness of thesemirrors is omparable to or less than the X-ray wavelengths in the 0.1{10 keV band over most of the mirrorsurfaes.Further author information: Ping Zhao: E-mail: zhao�fa.harvard.edu



However, the mirrors are not perfet, and onsequently there are still small amount of sattered X-rays. Weneed an aurate model of the X-ray sattering to fully evaluate the CXO performane and analyze the sienti�data. We have built a raytrae omputer model to simulate the CXO performane. In the urrent raytraemodel, the reetion and sattering are treated as separate e�ets. Eah ray hit the mirror is reeted aordingthe reetivity of the surfae geometry and the low frequeny surfae map, but not the high frequeny roughness,therefore the e�et of the surfae roughness on the reetion eÆieny is lost. The sattering is treated withsmall (sattering) angle approximation.Our new method treats the reetion and sattering together, and onsequently both depend upon thesurfae roughness. It does not require the approximation that the sattering angle is small ompared to thegrazing angle so that all the sattered rays an be traed aurately.2. POWER SPECTRAL DENSITY OF ROUGH SURFACESA rough surfae is desribed, statistially, by its surfae Power Spetral Density (PSD) as a funtion of thesurfae spatial frequeny, f . Consider a 1-dimensional surfae with length L and surfae height (i.e. deviationfrom a perfetly at surfae): z = h(x), whih assumes the value z (�1 < z <1). Its PSD is de�ned as:�PSD(f) � 2W1(f) = 2L �����Z L=2�L=2 e{2�xfh(x)dx�����2 (1)The PSD, as it is de�ned, is the \spetrum" of the surfae roughness. Its value at f is simply the \power"at that frequeny. It is easy to distinguish between periodi and random rough surfaes from their PSDs. Forperiodi rough surfaes, there are some \spetral lines" in their PSDs; while these lines don't exist for a realrandom rough surfae.Given a PSD funtion 2W1, the surfae roughness amplitude RMS in the frequeny band of f1 { f2 (bothf1 and f2 are positive) an be alulated as:�2f1�f2 = Z f2f1 2W1(f)df (2)3. CHANDRA X-RAY OPTICSThe Chandra X-ray optis { High Resolution Mirror Assembly (HRMA) { is an assembly of four nested WolterType-I (paraboloid and hyperboloid) grazing inidene mirrors made of Zerodur and oated with iridium (Ir).4{6The mirror elements were polished by Hughes Danbury Optial Systems, In. (HDOS) in Danbury, CT. Thesurfae roughness was measured during the HDOS metrology measurements after the �nal polishing, but beforethe iridium oating.7 Tests onduted on sample ats before and after the oating indiate that the oatingdoes not hange the surfae roughness.The instruments used for the measurements were the Cirularity and Inner Diameter Station (CIDS), thePreision Metrology Station (PMS), and the Miro Phase Measuring Interferometer (MPMI, aka WYKO). TheCIDS was used to determine the irularity and the inner diameters. The PMS was used to measure alongindividual axial meridians. With these two instruments, HDOS essentially measured the `hoops' and `staves' ofeah mirror barrel, and thus mapped the entire surfae. The miro-roughness was sampled along meridian atdi�erent azimuths using the WYKO instrument at three di�erent magni�ations (�1.5, �10 & �40).7, 8These metrology data were Fourier transformed and �ltered. The low frequeny parts of the CIDS and PMSdata were used to form mirror surfae deformation (from the designed mirror surfae) maps. The high frequenyparts of the PMS data and the WYKO data were used to estimate the surfae miro-roughness. Both of themare parts of the HRMA model we built for the raytrae simulation of the Chandra performane.�The de�nition 2W1 is onventional, where the subsript 1 denotes 1-dimensional; the PSD satis�es PSD(�f) =PSD(f), and typially positive frequeny limits are used for most spetral integrals. The total power, �2, is the integralof 2W1 from f = 0 to 1, i.e. �2 = R10 2W1(f)df .



Table 1. HRMA Mirror Setions and Their Surfae RoughnessHRMA Setions Num ofMirror Surfae Roughness Amplitude RMS �1�1000=mm (�A) SetionsP1 LC LB LA M (88%) SA SB SC 750.3 8.49 4.51 3.58 4.91 5.94 53.9P3 LB LA M (92%) SA SB 55.37 5.26 1.96 2.38 4.83P4 LB LA M (93%) SA SB 56.41 3.15 2.57 3.21 6.81P6 LB LA M (94%) SA SB 537.1 5.23 3.34 5.65 20.9H1 LD LC LB LA M (88%) SA SB SC SD SE SF 1126.9 5.34 3.64 3.34 3.32 3.32 3.32 3.32 3.53 7.30 60.3H3 LC LB LA M (92%) SA SB SC SD 84.87 2.90 2.23 2.08 2.08 2.10 3.95 5.56H4 LD LC LB LA M (93%) SA SB SC SD SE 107.18 3.83 2.61 2.57 2.36 2.36 2.74 2.68 4.01 29.4H6 LD LC LB LA M (94%) SA SB SC SD SE 1019.0 4.92 2.51 2.23 1.95 1.95 1.95 2.07 2.96 15.9Total 61The mirror surfae miro-roughness has little variation with azimuth, but tends to beome worse near themirror ends. We divided the data for eah mirror into several axial setions whih were seleted so that themeasured roughness at several plaes within a setion were reasonably uniform; this resulted in a total of 61setions. We then averaged the PSD measurements within eah setion to provide an estimate of the PSDfor that portion of the mirror element. Table 1 shows the resulting surfae roughness in the 61 HRMA mirrorsetions. The eight mirrors are named P1,3,4,6 (paraboloid) and H1,3,4,6 (hyperboloid) due to historial reasons(there were 6 mirror pairs when the HRMA was designed). The number underneath eah setion name is thesurfae roughness amplitude RMS, �1�1000=mm, alulated aording to Eq. (2) for f = 1� 1000 mm�1. Eahmirror is 838.2 mm in length. The middle setions (M), whih are the best polished and hene have the lowestPSDs, over most part of the mirror surfae (the number in parentheses after eah M denote the perentageoverage). The �'s for the M setions are only 2{3 �A. The end setions, where the �'s are relatively higher,over a very small part of the mirror (< 1%), and hene ontribute very little to the mirror performane.Figures 1 and 2 show the PSDs of the M (middle) and SC (small end) setions of P1. P1 and H1 were the �rstpolished mirror pair and are slightly \rougher" than other pairs (see Table 1). The dash and dotted lines showthe data from di�erent measurements: the PMS data are in the low frequeny range (f = 0:001� 0:3 mm�1);the WYKO data with 3 magni�ations are in the higher frequeny range (f = 0:3 � 1000 mm�1). The solidline is the ombined PSD from all four frequeny ranges. The SC setion obviously is muh rougher than theM setion. 4. MODEL SURFACESTypially, a random rough surfae is only desribed by its PSD. Most of the methods alulate the satteringfrom the surfae PSD. However, our method alulates the sattering diretly from the surfae high frequenyspatial pro�le. Therefore, we �rst need to onstrut a model surfae that is onsistent with a given PSD. Froma random rough surfae pro�le, one an derive a unique PSD. But from a given PSD one an't onstrut theoriginal surfae, beause the phase information was lost when deriving the PSD. However, one an onstrutmany model surfaes with the same roughness as the original one from the given PSD by assigning di�erentrandom phase fators to the spetral omponent.



Figure 1. Surfae PSD of Chandra mirror P1-M, the middle setion of mirror P1.

Figure 2. Surfae PSD of Chandra mirror P1-SC, the small end setion of mirror P1.



To onstrut a 1-dimensional model surfae with length L, we need to obtain N onseutive surfae heightvalues hi = h(xi) with a �xed interval �x to over the surfae (i.e. N�x = L), and its surfae tangent valuesh0i = h0(xi). In Appendix A, we show that hi and h0i an be omputed from the surfae PSD using the followingFourier transforms: hi = 1N N=2Xj=�(N=2�1) Hj e�{ 2�ijN (3)h0i = 1N N=2Xj=�(N=2�1) (�{2�fj Hj) e�{ 2�ijN (4)where Hj = NqPSD(fj) �f2 e{'j , 'j is the assigned random phase fator, and �f = 1=N�x. Both hi and h0iare real, this requires H�j = H�j , i.e. PSD(f�j) = PSD(fj) and '�j = �'j .To onstrut the model surfaes of HRMA, we hoose N = 221 and �x = 0:0004 mm. So L = N�x =838:86 mm, and �f = 1=N�x = 0:001192 mm�1. Figures 3 and 4 show one set of model surfae setions P1-Mand P1-SC, onstruted using Eqs. (3) and (4) with these parameters.5. SCATTERING FROM MODEL SURFACESIn this setion, we alulate the sattering of plane inident waves from a surfae model; most of the detailedderivations of the formulae an be found in Appendies B and C.We assume that the surfaes are suÆiently smooth so that: 1) there is no shadowing of one part of thesurfae by another; and 2) there is no reetion from one part of the surfae to another, i.e. there are no multiplereetions by the same surfae. For an inident plane wave with grazing angle �1, the �rst ondition requiresthat the absolute values of all the surfae tangents, jh0ij, are less than �1. The seond ondition requires jh0ij lessthan �1=2 (when h0i = ��1=2, the reeted wave is parallel to the surfae). The �rst ondition is automatiallysatis�ed when the seond ondition is met. So the surfae smoothness ondition for applying this method is:jh0ij < �12 (5)This ondition is easily satis�ed for all 61 setions of the HRMA, as an be seen by omparing the tangentdistributions in Figures 3 and 4 with the mean grazing angles of the four shells (51:260; 41:270; 36:430; 27:080),The sattering in the transverse diretion, i.e. the o�-plane sattering, is smaller than that in the planeof inidene by approximately a fator of the grazing angle, and onsequently is less than the unertaintiesin our surfae PSD. Therefore, in this paper, we ignore the o�-plane sattering and limit our disussion to a1-dimensional surfae.The sattering formula is given by the disrete Fourier transform of the �eld on the at surfae S0, as shownin Eq. (58) in Appendix C:I(�j+q=p) = A ��x sin(�1 � �j+q=p)� �2 ������ N=2Xi=�(N=2�1) �Eie{ 2�iq=pN � e{ 2�ijN ������2 (q = 0; 1; : : : ; p� 1) (6)where the sattering intensity I is a funtion of the sattering angle �j+q=p, whih is the deviation from thespeular reetion diretion towards the surfae; � is the wavelength; Ei is the �eld amplitude, after thereetion, on the at surfae at the uniform grid xi where the model surfae was onstruted. As desribedin Appendix C.3, Ei is a funtion of the inident wave, the model surfae height and tangent, and the loalreetivity. A is a normalization fator given by Eq. (63). Again we hoose N = 221 to use the entire length ofthe model surfae for the FFT omputation.



Figure 3. A model surfae of Chandra mirror setion P1-M, whih overs 88% of the mirror P1. The top two panelsshow the surfae height and the surfae tangent for a 1 mm setion of the model mirror. The bottom panel shows thesurfae tangent distribution of the entire surfae, whih an be desribed aurately by a Gaussian with � = 60:200.

Figure 4. A model surfae of Chandra mirror setion P1-SC, whih is the \worst" end-setion of the P1 mirror. Thetop two panels show the surfae height and the surfae tangent for a 1 mm setion of the model mirror. The bottompanel shows the surfae tangent distribution of the entire surfae, whih an be desribed aurately by a Gaussian with� = 138:700.



Figure 5. The sattering of 1.49 keV X-rays at 51.260 grazing inident angle from the model surfae P1-M. The top-leftpanel shows the sattering �eld intensity verses the sattering angle. The very sharp peak is at the speular reetiondiretion � = 0. The asymmetri nature of the sattering is learly shown. The top-right panel is the same plot butzoomed into the ore of the peak; it shows the Fraunhofer di�ration pattern due to the �nite mirror length. Thebottom-left panel shows the frational Enirled Energy (EE) verses the sattering angle, for both sides of the speulardiretion, and also their sum. The bottom-right panel shows the sattering funtion S verses the sattering angle in thesame range as the top-right panel.Figures 5 and 6 show the sattering results for 1.49 keV X-rays inident upon the mirror P1 at its meangrazing angle (51.260). The top two panels show the sattering �eld intensity verses the sattering angle. Thesharp peak of speular reetion (top-left) and the Fraunhofer di�ration pattern (top-right) are shown asexpeted. The bottom two panels show the frational Enirled Energies EE+; EE�; EE and the satteringfuntion S de�ned as: EE+(�) � 1Es Z �0 I(�) d� = 1REi Z �0 I(�) d� (7)EE�(�) � 1Es Z 0�� I(�) d� = 1REi Z 0�� I(�) d� (8)EE(�) � 1Es Z ��� I(�) d� = 1REi Z ��� I(�) d� (9)



Figure 6. Sattering from model surfae P1-SC. It has muh broader sattering peak than P1-M.S(�) � 1Es Z ��1 I(�) d� = 1REi Z ��1 I(�) d� (10)where Ei, Es and R are the total inident and sattered energy, and the reetivity of the rough surfae asdesribed in Appendix C.5. 6. SUMMARY AND FUTURE WORKWe have developed a method to model the wave sattering from random rough surfaes. Model surfaes withthe same roughness as the atual surfae are onstruted from the atual PSD. The sattering from the modelsurfaes is alulated using the sattering formulae we derived in this paper. These sattering formulae arebased on the general Kirhho� equations but without small angle approximations. This method treats thereetion and sattering together and provides the dependene of the reetivity on the surfae roughness. Itis appliable in general and is espeially useful for X-ray sattering at grazing angles. We have applied thismethod to the mirrors of the Chandra X-ray Observatory and have shown that the alulated sattering pro�leis as expeted, inluding the Fraunhofer sattering patterns whih result from the �nite length of the surfaes.This work is still ontinuing. Next we will generate sattering tables, whih are the tabulations of thesattering funtion S. Then we will use these sattering tables in our raytrae model to simulate the CXOperformane and ompare it with the real results of the CXO, from both on-orbit observations and its groundalibrations. This method should be useful for other X-ray telesope missions as well.



APPENDIX A. CONSTRUCTION OF MODEL SURFACESA.1. Fourier TransformThe Continuous Fourier Transform equations are9:H(f) = Z 1�1 h(x) e{2�xf dx (forward) (11)h(x) = Z 1�1 H(f) e�{2�xf df (inverse) (12)Here if h is a funtion of position, x, in mm, H will be a funtion of spatial frequeny, f , in mm�1.When there are N onseutive sampled values at x = xi with the sampling interval �x, we make thetransform: x ) xi � i �x; h(x)) hi � h(xi); i = �(N2 � 1); : : : ;�1; 0; 1; : : : ; N2 (13)f ) fj � j �f; H(f)) Hj � H(fj)�x ; j = �(N2 � 1); : : : ;�1; 0; 1; : : : ; N2 (14)where �x�f = 1=N . We obtain the Disrete Fourier Transform equations:Hj = N=2Xi=�(N=2�1) hi e{ 2�ijN (forward) (15)hi = 1N N=2Xj=�(N=2�1) Hj e�{ 2�ijN (inverse) (16)A.2. Surfae HeightFrom Eq (1), we obtain:PSD(f) = 2L �����Z L=2�L=2 e{2�xfh(x)dx�����2 =) rPSD(f) L2 = �����Z L=2�L=2 e{2�xfh(x)dx����� (17)Here PSD(f) is a real ontinuous funtion of the spatial frequeny f . We �rst need to onvert Eq (17) to adisrete Fourier transform. Using the equations in A.1 and relation L = N�x = 1=�f , we obtain:jHj j = jH(fj)j�x = 1�xrPSD(fj) L2 = NrPSD(fj) �f2 = ������ N=2Xi=�(N=2�1) hi e{ 2�ijN ������ (18)Therefore Hj an be expressed as the forward Fourier transform of hi asHj = NrPSD(fj) �f2 e{'j = N=2Xi=�(N=2�1) hi e{ 2�ijN (19)Hene the surfae height, h(xi) = hi, an be expressed as the inverse Fourier transform of Hjhi = 1N N=2Xj=�(N=2�1) Hj e�{ 2�ijN = 1N N=2Xj=�(N=2�1) NrPSD(fj) �f2 e{'j e�{ 2�ijN (20)where 'j is a random phase fator. A set of surfae heights, hi, an be generated from a set of phase fator 'j .Therefore for a given PSD, we an generate as many sets of surfae map (of the same roughness) as we want byhanging the random phase fator 'j . Beause hi, the surfae height, has to be real, this requires H�j = H�j ,i.e. PSD(f�j) = PSD(fj) and '�j = �'j .



A.3. Surfae TangentSine hi = 1N N=2Xj=�(N=2�1) Hj e�{ 2�ijN = 1N N=2Xj=�(N=2�1) Hj e�{2�xifj (21)The surfae tangent an be obtained by taking the derivative on both sides of Eq. (21) with respet to xi:h0i = 1N N=2Xj=�(N=2�1) (�{2�fj Hj) e�{2�xifj = 1N N=2Xj=�(N=2�1) (�{2�fj Hj) e�{ 2�ijN (22)The surfae tangent h0i also has to be real. This ondition is automatially satis�ed beause�{2�f�j H�j = � {2�(�fj) H�j = {2�fj H�j = (�{2�fj Hj)� (23)APPENDIX B. KIRCHHOFF SOLUTIONThe wave sattering from random rough surfaes is desribed by the Kirhho� solution2 and its far-�eld ap-proximation.
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L/2-L/2Figure 7. Wave sattering from a random rough surfae. A at surfae S0 with z = 0 lies in the x-y plane (y-axis notshown). A rough surfae S has surfae height z = h(x; y), deviates from S0. The z axis is normal to the x-y plane andpoints up. Inident and reeting (or sattering) wave-vetors are shown as k1 and k2. Inident and reeting grazingangles with respet to the surfae S0 are �1 and �2. r0 is the observation point where the sattering is to be measured.As shown in Figure 7, de�ne:� S0 | 2-dimensional at surfae at z = 0.� S | 2-dimensional rough surfae, desribed by its surfae height z = h(x; y).� E1e{k1�r = E1e{(k1x+k3z) | inident plane wave (in the inident plane, therefore k2 = 0).� E2e{k2�r = E2e{(kxx+kyy+kzz) | reeted or sattered wave from the rough surfae S.� �1, �2 | inident and reeting grazing angles with respet to the surfae S0.



where k1 and k2 are the wave vetors of the inident and sattered waves, so E1 � k1 = 0; E2 � k2 = 0, andk � 2�� = jk1j = qk21 + k23 = jk2j = qk2x + k2y + k2z (24)A vetor normal to the loal surfae on S is given by:n = �r(h(x; y)� z) = � �h(x; y)�x x̂� �h(x; y)�y ŷ + ẑ (25)The �eld at an observation point r0 is given by the integration of ontributions from the �eld E(s)e{(k1x+k3z)on the surfae S:E(r0) = 1{� ZS Z dsE(s)e{(k1x+k3z) e{krr2 (n̂ � r) = 1{� ZZ dxdyE(s)e{(k1x+k3h(x;y)) e{krr2 (n � r) (26)where ds is an element of surfae area; E(s) is given by the inident wave E1 multiplied by the suitablereetion oeÆient; the vetor r goes from the point of integration (x; y; z) to the observation point (x0; y0; z0),and r = jrj; n̂ is a unit vetor in the diretion of n, and (n̂ � r) ds = (n � r) dxdy. Eq. (26) is known as thegeneral Kirhho� solution for the wave sattering.Next we derive the far-�eld approximation of this solution. When the reeting surfae is near the origin ofthe oordinate system and the observation point is far from the origin, i.e. when (x� x0; y � y0; z � z0), wehave: k2 = kxx̂+ kyŷ + kzẑ = k (x0 � x)jrj x̂+ k (y0 � y)jrj ŷ + k (z0 � z)jrj ẑ � kr0 (x0x̂+ y0ŷ + z0ẑ) (27)r = (x0 � x)x̂+ (y0 � y)ŷ + (z0 � z)ẑ � x0x̂+ y0ŷ + z0ẑ � r0k (kxx̂+ kyŷ + kzẑ) (28)r = jrj = p(x0 � x)2 + (y0 � y)2 + (z0 � z)2 � r0 � x0r0 x� y0r0 y � z0r0 z (29)where r0 = jr0j =px20 + y20 + z20 . Keep the �rst order of r in the phase fator and zeroth order elsewhere:n � r � �r0k �kx �h(x; y)�x + ky �h(x; y)�y � kz� (30)e{kr � e{k(r0� x0r0 x� y0r0 y� z0r0 z) � e{kr0 e�{(kxx+kyy+kzh(x;y)) (31)Eq. (26) beomes:E(r0) � � 1{� ZZ dxdyE(s)e{(k1x+k3z) e{kr0r20 e�{(kxx+kyy+kzz) r0k �kx �h(x; y)�x + ky �h(x; y)�y � kz� (32)= {e{kr02�r0 ZZ dxdyE(s) e{(k1x+k3h(x;y)) e�{(kxx+kyy+kzh(x;y)) �kx�h(x; y)�x + ky �h(x; y)�y � kz� (33)= {e{kr02�r0 ZZ dxdyE(s)e{[(k1�kx)x�kyy+(k3�kz)h(x;y)℄ �kx �h(x; y)�x + ky �h(x; y)�y � kz� (34)This is the far-�eld approximation of the Kirhho� solution for the wave sattering.APPENDIX C. SCATTERING FORMULAIn this setion, we derive the sattering formula from the Kirhho� solution for the onstruted model surfaes.
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Figure 8. The sattering geometry. The at surfae S0 is loated on the x axis. The z axis is normal to the surfae S0.The u-v axes form a oordinate system that is rotated lokwise from the x-z axes by (�2 � �1), so the v axis is alignedwith the speular reetion diretion. An inident ray, k1, omes in from the left with a grazing angle �1; had it strukthe surfae S0 at x1, it would have been reeted parallel to the v axis as k20. However, it atually strikes the roughsurfae S at ri(xi; zi), and is reeted at an angle �2 as k2. The intersetion of k2 with the surfae S0 is at xri .C.1. Integral on 1-dimensional at surfae S0We �rst redue the Kirhho� solution to a 1-dimensional integral on at surfae S0. Consider:� In plane sattering: ky = 0� One dimensional surfae, i.e. h(x; y) only depends on x: h(x; y) = h(x)Eq. (33) beomes:E(r0) = {e{kr02� Z dxE(s) e{(k1x+k3h(x)) e�{(kxx+kzh(x)) �kx �h(x)�x � kz� (35)here we have omitted a dimensionless fator a = Y=r0, where Y is the transverse surfae dimension; this fatorwill be absorbed later in an overall normalization fator A.Figure 8 shows the sattering geometry. The inident ray, k1, strikes the rough surfae at ri(xi; zi) andis reeted as k2, where xi is one of the N positions of the onstruted model surfae (see Appendix A) andzi = h(xi) = hi. The reeted �eld at ri isE(ri) e{(k1xi+k3zi) = E(xi; hi) e{(k1xi+k3hi) (36)



For the integral (35), this is equivalent to have a �eld at (xri ; 0), the intersetion of k2 and x axis, on thesurfae S0 desribed by: E(xri ; 0) = E(ri) e{(k1xi+k3hi�khi=sin �2) (37)where khi=sin �2 is the phase delay between (xi; hi) and (xri ; 0). Let:E(xri) = E(xri ; 0) e�{k1xri = E(ri) e{(k1xi+k3hi�khi=sin �2�k1xri ) = E(ri) e{ �i (38)So the integral (35) an be written asE(r0) = {e{kr02� Z dxE(x) e{(k1x�kxx�kzh(x)) �kx �h(x)�x � kz� (39)Now the integration boundary has hanged from E(s) on the rough surfae S to E(x) on the at surfae S0,so h(x) = 0 and �h(x)�x = 0. Therefore Eq. (39) beomes:E(r0) = E(kx; kz) = {e{kr02� Z dxE(x) e{(k1�kx)x (�kz) = � {kze{kr02� Z dxE(x) e{(k1�kx)x (40)here the reeted �eld E(x) are alulated at non-uniformly distributed, disrete points x = xri . The position,xri , and the phase, �i, of the �eld E(xri) are:xri = xi � hitan �2 (41)�i = k1xi + k3hi � khisin �2 � k1xri = k�os �1xi � sin �1hi � hisin �2 � os �1�xi � hitan �2��= �khi�sin �1 + 1sin �2 � os �1tan �2� = � k hi 1� os(�1 + �2)sin �2 = � 2 k hi sin2 �1+�22sin �2 (42)where k3 = �ksin �1, beause, by de�nition, the z axis points up.Thus for the �eld E(s) of eah ray k1 at ri, we an use its equivalent �eld E(x) at xri to do the integral(xri < xi when hi > 0, xri > xi when hi < 0).C.2. Fourier transform with variable �De�ne a oordinate system u-v that is rotated lokwise from the x-z axes by (�2 � �1), so the v axis is alignedwith the speular reetion diretion (see Figure 8). De�ne the sattering angle, �, as the angle of deviationlokwise from the v axis, i.e. � = �1 � �2. Also de�ne the variable � = k1�kx2� . Therefore:k1 = k os �1; kx = k os �2 = k os(�1 � �); kz = k sin �2 = k sin(�1 � �) (43)2�� = k1 � kx = k os �1 � k os(�1 � �) = � 2 k sin(�1 � �2) sin �2 (44)� = �1 � os�1�os �1 � 2��k � = �1 � os�1 (os �1 � ��) (45)The sattering equation (40) beomes:E(r0) = E(�(�)) = � {e{kr0k sin(�1 � �)2� Z dxE(x) e{2��x = � {e{kr0sin(�1 � �)� Z dxE(x) e{2��x (46)Thus, the sattering �eld E(�) an be obtained from the Fourier transform integral of the �eld E(x) on thesurfae S0. And it an be an be expressed as E(�) using Eq. (44).



C.3. Disrete Fourier transform at xiIn pratie, this integral is performed numerially using the Fast Fourier Transform (FFT) on N uniformlydistributed points xi's where we onstruted the model surfae. Therefore we need to onvert the �eld E(xri)to the �eld E(xi). This an be simply done by multiplying E(xri) with two fators:E(xi) = AiBi E(xri) = Ai BiE(xi � hitan �2 ) = Ai BiE(ri) e{�i (47)Where the fator Ai is used to adjust the inident plane wave density due to the di�erent surfae height hi'sat the uniform grid xi's; it is alulated by interepting all the inident rays that strike on the surfae S at(xi; hi)'s with a oordinate that is perpendiular to the diretion of inidene. Let the interepting points bewi's on the oordinate. Then: Ai = wi+1 � wi�12�x sin�1 (48)The fator Bi is used to adjust the outgoing ray density due to the redistribution of the reeted rays from thenon-uniform grid xri to the uniform grid xi. For example, when the point xri falls between the �xed grid pointsxi�1 and xi (xi � xi�1 = �x), thenxi � xri�x E(xri) is added to �eld E(xi�1) (49)xri � xi�1�x E(xri) is added to �eld E(xi) (50)This proess is done for eah ray until all the �elds are redistributed to the uniform grid xi.Having obtained the �eld E(xi) on uniform grid, xi, we an rewrite the sattering equation (46) as thedisrete Fourier transform (see Appendix A.1). Let:x ) xi � i �x; E(x) ) Ei � E(xi); i = �(N2 � 1); : : : ;�1; 0; 1; : : : ; N2 (51)� ) �j � j ��; E(�) ) Ej � E(�j)�x ; j = �(N2 � 1); : : : ;�1; 0; 1; : : : ; N2 (52)where �x�� = 1=N . The sattering equation (46) beomes:Ej � E(�j)�x = � {e{kr0sin(�1 � �j)� N=2Xi=�(N=2�1) Ei e{ 2�ijN (53)where Ei = E(xi) = Ai BiE(ri) e{�i = Ai Bi E1R(�1 + tan�1(h0i)) e{�i (54)where R(�1+ tan�1(h0i)) is the reetion oeÆient of ray i with the loal grazing angle, �1+ tan�1(h0i), on therough surfae S. h0i is the loal surfae tangent of the model surfae.The sattering intensity, I , is given as a funtion of the sattering angle, �, by:I(�j) = I(�(�j)) � AE(�j)E�(�j) = A ��x sin(�1 � �j)� �2 ������ N=2Xi=�(N=2�1) Ei e{ 2�ijN ������2 (55)where A is a normalization fator whih we will derive in setion C.5.



C.4. Sattering formula { the Fraunhofer di�ration patternWith the Eq. (55), it seems that we an �nally obtain the pro�le of sattering from the rough surfae. However,this is not quite true, beause of the disrete Fourier transform. The main disadvantage of the disrete Fouriertransform is (what else?) \disrete". Its shortomings are displayed perfetly in this ase. Eq. (55) is orret,but all of the points exept the entral peak (�j = 0) are alulated in the valleys of the Fraunhofer di�rationpattern at: �j = � j �N �x sin �1 = � j �L sin �1 ; j = �1;�2;�3; : : : (56)where L is the surfae length. In ase of a perfet surfae, Eq. (55) gives I(�j) = 0 exept for one point at j = 0,and the orret di�ration pattern from the �nite surfae length is not obtained. To get the di�ration patternsat angles between �j and �j+1, we divide �j+1� �j into p equal spaes. The di�ration pattern at �j+q=p(q < p)an be alulated as:I(�j+q=p) = A ��x sin(�1 � �j+q=p)� �2 ������ N=2Xi=�(N=2�1) Ei e{ 2�i(j+q=p)N ������2 (q = 0; 1; 2; : : : ; p� 1) (57)= A ��x sin(�1 � �j+q=p)� �2 ������ N=2Xi=�(N=2�1) �Eie{ 2�iq=pN � e{ 2�ijN ������2 (58)So instead of one Fourier transform equation on Ei, we need do p Fourier transform equations on Ei e{ 2�iq=pN .Usually, p = 8 is suÆient to alulate very nie Fraunhofer di�ration patterns. Eq. (58) is the �nal satteringformula. It maps the �eld on the surfae, E(x), to the �eld intensity of sattering, I(�).C.5. NormalizationNow let's derive the normalization fator A introdued in Eq. (55). Let " be the energy arried by eah of theN inident rays of the plane wave E1. The total inident energy, Ei, total reeted energy on the surfae, Er,and the total sattered energy, Es, are:Ei = N" (59)Er = N=2Xi=�(N=2�1) jEij2 = " N=2Xi=�(N=2�1) A2i B2i ��R(�1 + tan�1(h0i))��2 (60)Es = Z d� I(�) = A Z d� jE(�)j2 (61)De�ne the reetivity of the rough surfae as:R � ErEi = 1N N=2Xi=�(N=2�1) A2i B2i ��R(�1 + tan�1(h0i))��2 (62)Let Er = Es. We obtain:A = "PN=2i=�(N=2�1) A2i B2i ��R(�1 + tan�1(h0i))��2R d� jE(�)j2 = "NRR d� jE(�)j2 = EiRR d� jE(�)j2 (63)
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