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ABSTRACT

The AXAF VETA-I mirror encircled energy was measured with a series of apertures and two flow gas
proportional counters at five X-ray energies ranging from 0.28 to 2.3 keV. The proportional counter has a
thin plastic window with an opaque wire mesh supporting grid. Depending on the counter position, this
mesh can cause the X-ray transmission to vary as much as 9%, which directly translates into an error in
the encircled energy. In order to correct this wire mesh effect, window scan measurements were made, in
which the counter was scanned in both horizontal (Y) and vertical (Z) directions with the aperture fixed.
Post VETA measurement of the VXDS setup were made to determine the exact geometry and position of
the mesh grid. Computer models of the window mesh were developed to simulate the X-ray transmission
based on this measurement. The window scan data were fitted to such mesh models and corrections were
made. After this study, the mesh effect was well understood and the final results of the encircled energy
were obtained with an uncertainty of less than 0.8%.

1. INTRODUCTION

The Verification Engineering Test Article-T (VETA-T), made of Zerodur with a diameter of 1.2 meters,
is the uncoated outmost mirror pair of The Advanced X-ray Astrophysical Facility (AXAF), the third of
NASA’s four Great Space Observatories.! Its mirror figures and surface quality were measured at the X-ray
Calibration Facility (XRCF) of the Marshall Space Flight Center (MSFC) from August to October of 1991.2
X-rays generated by an electron impact source® 528 meters away were focused by the VETA to its focal
plane, which is 10 meters behind the VETA. The focused X-rays were then detected and measured with the
VETA X-ray Detecting System (VXDS) built by SAO.* Four types of results were obtained, i.e. Full Width
Half Maximum (FWHM), Encircled Energy, Effective Area, and Ring Focus. All the measurements were
done with X-ray detectors placed in the focal plane, except the Ring Focus measurements, which were done
in the Ring focal plane (about 21 mm in front of the focal plane).

We first give some definitions:

Total Effective Area (or simply Effective Area): The total power reflected by the VETA into 27
steradians, measured in units of em?. It is equal to the projected area of an equivalent mirror with 100%
reflectivity, or a projected area of P1 x R?(E,f), where P1 is the Paraboloid mirror of the VETA and R is
the mirror reflectivity as a function of X-ray energy and grazing angle.

Encircled Energy: The fraction of the power reflected from the mirror that passes through an aperture
of radius r, in the focal plane. It is measured in units of the effective area or em? as a function of r. Therefore

it 1s also called encircled effective area.

Fractional Encircled Energy: The Encircled Energy normalized to that contained in the largest



aperture used for the measurement, 20 mm diameter (= 6.88 arcmin).

The requirements for the VETA-T test was to measure the FWHM (expected to be better than 0.5 arcsec)
to & 0.05 arcsec precision, the Fractional Encircled Energy to & 2%, and the Effective Area to 4 5%.

In this paper we discuss the VETA encircled energy and effective area measurements and their data
reduction for up to the 20 mm diameter aperture. The total effective area involves wing scan measurement
and is discussed in another paper in this volume.® Two major corrections were made to the raw data. The first
is the spectrum correction with which we take care of the spectrum contamination taken by the proportional
counter. The second, an even bigger correction, is the counter window mesh correction. The first correction
is discussed by another paper in this volume.® This paper mainly deals with the second correction.

In the following sections we discuss the techniques used for the measurements, the method used for the
wire mesh correction, and the results. Section 2 describes the VETA encircled energy measurements and
explains the X-ray detector window mesh effect. Section 3 is about the Post VETA Measurement. Section
4 discusses the computer mesh models. Section 5 gives the mesh effect correction. And section 6 lists the
final results of the VETA encircled energy.

Figure 1: VXDS Flow Proportional Counter Window. The mesh supporting grid is made of gold wire with
50.8 pm diameter and 529.17 pm pitch.

2. VETA-I ENCIRCLED ENERGY MEASUREMENTS AND WIRE MESH
EFFECT

VETA encircled energy measurements were made at five different X-ray energies, i.e. C-K (0.277 keV),
Cu-L (0.932 keV), ALK (1.488 keV), Zr-L (2.067 keV) and Mo-L (2.334 keV). The X-rays focused by the
VETA pass through an aperture of radius r, in the focal plane, and detected by a flow gas proportional



counter placed 25 mm behind the focal plane. There are 16 apertures with diameters of 0.005, 0.01, 0.025,
0.05,0.1,0.3,0.5,0.75, 1, 1.5, 2, 3, 5, 7.5, 10, 20 mm. The aperture 0.005 through 0.5 mm are laser drilled
pinholes on 99.9% pure and 12.5 microns thick gold foil. The 0.75 mm or larger apertures were machine
drilled on aluminum plate with irridite coating. We have taken the scanning electron microscope pictures
of the laser drilled pinholes. Their actual sizes and shapes are slightly different from a perfect circle with
quoted diameters, which is discussed by another paper in this volume.? Each aperture was placed in the
focal plane of the VETA-T and centered on the peak of the VETA Point Spread Function (PSF). The photon
counts, counted by the flow gas proportional counter (also called X-ray Detection Assembly counter or XDA
counter), through each aperture then represents the integral of the PSF out to the radius of that aperture.
The encircled energy is measured by comparing the counting rate to that obtained in an identical flow
counter, the Beam Normalization Detector (BND), of very well known area, exposed to the same incident
beam in the entrance plane of the P1. Depending on the source intensity, the integration time was chosen to
ensure both detectors receiving enough counts so the statistical error is less than 1%. The VETA effective
area is calculated as

XDA Counts ()
BND counts

Effective Area (r) = x BND area

where BND area = 7 ecm? with an uncertainty of 0.05%.

The flow proportional counter is filled with either 125 torr methane for a low energy line (C-K) or 400
torr P10 gas (10% methane and 90% argon) for higher energy lines (Cu-L, Al-K, Zr-L and Mo-L). Tt has
a thin polypropylene window with an opaque wire mesh supporting grid which prevents the window from
breaking under differential pressure. The wire is made of gold with 50.8 pm diameter and the average mesh
period is 529.17 ym (see Figure 1). When the window is uniformly illuminated, which is the case for the
BND counter, the transmission is 81.72% due to the wire mesh effect. But it is not so simple for the XDA
counter. As shown in Figure 2, the X-ray photons from the focal point expand into a ring of about 3 mm
diameter when they strike the counter window, which is located 25 mm behind the focal plane. Depending

Figure 2: Counter Window Wire Mesh Effect. The X-ray photons form a ring pattern when they enter the
counter window. Depending on the phase of the mesh grid relative to the photon ring, the X-ray transmission
can vary from 75% to 92%.



Figure 3: The planned VETA Encircled Energy Window Scan Measurement. The arrows indicate the Y
and Z positions of the aperture center with respect to that of the mesh grid. The transmission maximum
occurs when the aperture center is at one of the mesh grid intersection, except for the 20 mm aperture, in
which the transmission minimum occurs. The scan maximum occurs when the aperture center crosses one
of the mesh wire, also except for the 20 mm aperture, in which the transmission minimum occurs.

on the phase of the mesh grid relative to the photon ring, the X-ray transmission can vary from 75% to 92%,
which directly translates into an error of the encircled energy. Obviously we had to take this mesh effect
very seriously in order to fulfill the measurement precision requirements.

To measure the counting rate modulation due to the wire mesh and to make appropriate transmission
corrections, the window was scanned in both Y and Z directions with the aperture fixed. Three sources
(Al, C and Zr) and 11 apertures (0.3 through 20 mm) were used for the window scan measurements. The
procedure was to: 1) make a scan in Y direction ; 2) find the location with the highest counts; 3) offset
the counter to this location; 4) make a scan in Z direction. Each scan is a 600 gm span with 9 or 11 steps
(see Figure 3). Integration time is chosen to ensure enough counts (> 10000) for each step. Figure 4 is
the Quick-look data of some typical scans, generated during the VETA test. The mesh modulation effect is
clearly seen. Figure 5 is the Quick-look data for 2 and 10 mm apertures which shows something we could
not understand at that time: the window Z-scans have much higher counts than the Y-scans. Obviously
they were not done as planned because otherwise the highest point of the Y-scan curve should agree with
the middle point of the Z-scan curve. Figure 6 shows all the quick-look window scan data for the Al-K line.
It shows the 20 mm aperture window scan and the Z-scans for the 2 and 10 mm aperture are distinctively
higher than the rest of the window scans. Compared with the wire mesh models (see Section 5), a simple
analysis (we leave this to our reader as a little fun exercise) concludes that all the window scans were not
done as planned. This was caused by a computer error and it complicated the data reduction. In order to
make the mesh correction, we had to fully understand how the window scan measurements were actually
done and the exact geometry of the apertures and counter setup. Therefore we planned the Post VETA
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Figure 4: VETA Encircled Energy Window Scan Quick-look Data. Al-K source, aperture 3 - 7.5 mm.
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Figure 5: VETA Encircled Energy Window Scan Quick-look Data. Al-K source, aperture 2 and 10 mm.

The Z-scans have much higher counts than Y-scans. It indicates that these window scan measurements were
not done as planned.
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Figure 6: VETA Encircled Energy vs. aperture size Quick-look Data. Al-K source. The 20 mm aperture
window scans and the Z-scans for the 2 and 10 mm aperture are distinctively higher than the rest of the
window scans.

Measurement which was carried out in March of 1992 at XRCF.

3. POST VETA MEASUREMENTS

Two Post VETA Measurements were made. The first one was the mechanical measurement which solely
supported the window mesh effect analysis. The second one was the X-ray measurement which measured the
beam uniformity, filter thickness, detector response etc., in supporting the whole VETA data analysis and
HRMA (High Resolution Mirror Assembly) test planning. In the mechanical measurement we measured: 1)
the mesh grid periodicity; 2) the mesh wire orientation; 3) relative Y and Z positions between the VETA
focal points and the wire mesh as well as the counter window bezel; 4) VETA focal point to wire mesh
distance (along the X axis). Depending upon the region on the window, the mesh periodicity varies between
499 pm to 564 pm. The mesh wires are laid within 0.2 degrees from the horizontal and vertical directions. A
motor log recorded all the motor positions during the VETA test. We used this motor log to repeat all the
moves and measured the aperture and counter positions. Figure 7 shows the actual positions on the window
mesh where the X-rays enter the window for different scans and apertures. It is seen that the Y-scans and
Z-scans were actually made at different parts of the window. There are actually six locations on the window
where data were taken: window Y-scan, Z-scan and window fixed measurement for 2 and 10 mm apertures;
window Y-scan, Z-scan and window fixed measurement for other apertures. There was a so called Prime-Y
move, which moves the whole XDA assembly in order to reach different parts of the detector, during the
VETA test. We later found this Prime-Y move had a 0.1% error — it was 100 pm short for a 100 mm move
— and also its repeatability was not very good. But our motor log regards every move as accurate as its read
out. Therefore the positions shown in Figure 7 are only good to &+ 20 ym. More accurate window positions



Figure 7: Window Scan Positions. A result of the Post VETA Measurements. (a) shows the relative posi-
tions of the window bezel (big circle), mesh grid and the aperture center positions where the measurements
were made (little crosses). (b) shows a magnified portion of (a). The measurements were bunched at six
locations. Location (4), (5) and (6) are for 2 and 10 mm apertures. Location (1), (2) and (3) are for the rest
of the apertures. Window fixed measurements were made at locations (1) and (4). They were also for the
planned window scan measurements. But the actual window Y-scan measurements were made at (2) and
(5). The actual window Z-scan measurements were made at (3) and (6).



were obtained by fitting the VETA data to the mesh models (see next two sections). Because the window
slightly bulged out under the pressure, the VETA focal point (the center of the 5 pm aperture was used to
refer to this point) to wire mesh distances were measured at all six positions shown in Figure 7 under 125
and 400 torr differential pressures. The results are in Table 1.

Table 1. VETA Focus to Window Mesh Distance

Source Gas & Aperture Size
Pressure 0.005-7.5 mm | 2 & 10mm 20mm
C Methane/125 Torr | 24.940 mm | 24.940 mm | 29.012 mm
Al,Cu,Mo,Zr P10/400 Torr 24.703 mm | 24.814 mm | 28.775 mm

4. WIRE MESH COMPUTER MODELS

Computer models of the window mesh were developed to simulate the X-ray transmission based on
the exact XDA geometry and our knowledge of the VETA.” First, ray-trace image files of X-ray on the
counter window were generated by using the OSAC package. The ray-trace included the effects of residual
gravitational distortions, scatterings for different energies, despace due to the uncut glass, apodization, finite
source sizes and their intensity distribution, finite source distance, mirror surface figures, and mirror support
strut. For all five sources and different focuses to mesh distances, there are 14 ray-trace image files generated
and each contains 50000 photons. We then laid each ray-trace image on top of a mesh wire grid model
and calculated the number of photons blocked by the wire grid. The mesh grid model was then moved in
both Y and Z directions with the ray-trace image fixed to simulate the window scan, and transmission was
calculated for each move. Figure 8 shows the ray-trace image of the Al-K source on top of the wire grid for
one fixed position. Figure 9 shows the mesh transmission model for the Al-K source with a 2-dimensional
scan of 81x81 positions. It 1s seen that the mesh effect 1s very strong. For 20 mm aperture, the transmission
is the minimum when the center of the aperture is at one of the intersections of the mesh grid. For other
apertures, the transmission is the maximum in that case. Depending on the counter position, the X-ray
transmission can vary between 75% and 92%. There are 14 such mesh models corresponding to 14 ray-trace
files as mentioned above.

5. WIRE MESH CORRECTIONS

To make the mesh effect correction, we had to first fit the data to the mesh model to find the accurate
Y and Z positions of the window scan. The correction was then made by comparing the percentage of
transmission at these positions in the mesh model to the BND counter mesh transmission. The quick-look
data shown in section 3 provide a preliminary result during and immediately after the VETA test. The
spectrum fitting analysis was done for all the VETA encircled energy data to correct spectral contamination
including bremsstrahlung continuum, pulse pileup, background and deadtime.® The spectrum corrected data
were then used to fit with their corresponding mesh models with a minimum y?. The initial fit was made
based on the window scan positions measured during the post VETA measurement. The VETA motor log
gives the relative positions between Y-scan and Z-scan for each aperture. More accurate fit was then obtained
by combining the initial fit and the motor log. This process was like fitting a two dimensional data to the
mesh model, even though the data were only from two one dimensional scans perpendicular to each other.
The data fit the mesh model very well. The reduced y? for each window Y and Z scan pair fit ranges from
0.4 to 1.4 with the average around 1. Figure 10 (a) and (b) show one of the typical fits. The fitting process
located the exact relative positions between the aperture and the window mesh. The XDA transmission rate
at these positions was then calculated using the mesh model. The mesh corrections were finally made by
multiplying the spectrum corrected data with the BND transmission rate (81.72%) and dividing it by the
calculated XDA transmission rate. Figure 10 (¢) and (d) show the corrected encircled energy window scan
data. It is seen that the mesh modulation effect is removed.



Figure 8: Raytrace Image on Mesh grid Model. Al-K source. (a) and (b) show, one fixed counter position,
the 50000 photon raytrace images on top of the mesh grin model for 0.005 - 10 mm apertures and 20 mm
aperture, respectively. (c¢) and (d) show the mesh transmission pattern for the same raytrace images.



Figure 9: Window Mesh Transmission Models. Al-K source. (a) is the model for 0.005 to 7.5 mm apertures,
in which a maximum transmission occurs when the Y-Z coordinates of the aperture center is at a mesh wire
intersection. (b) is the model for 20 mm aperture, in which a minimum transmission occurs when the Y-Z
coordinates of the aperture center is at a mesh wire intersection. Depending on the counter position, the
X-ray transmission can vary between 75% and 92%.
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Window Scan Data fitted with the Mesh Transmission Model

(em?)

Effective Area

Model file: mesh537_E_2.07_FDIST_24703

Window Scan Data fitted with the Mesh Transmission Model

Model file: mesh537_E_2.07_FDIST_24703

Scan file: 004ZR20837 Aperture: 5.000 mm Scan file: 005ZR20838 Aperture: 5.000 mm
30 T T T T T T i T T T T T 30 T T T T T T i T T T T
Scan steps = 11 Stepsize = 60.0 um Scan steps = 11 Stepsize = 60.0 um
Mesh period = 537.00 um q Mesh period = 537.00 um q
Scan center = 199.65 um Scan center = 523.32 um

24

Reduced Chi—sq = 0.405

(em?)

Effective Area

Reduced Chi—-sq = 0.714

0 500
Y position (um)

1000

Q 500
Z position (um)

1000

Window Scan Data with Mesh Transmission Corrections
Window Scan file: 005ZR20838
Aperture; 5.0000 mm Average: 27.557 cm?
T T T : : T T

Window Scan Data with Mesh Transmission Corrections
Window Scan file: 004ZR20837
Aperture; 5.0000 mm Average: 27.331 cm?
T T T : : T T

(em?)

32[ T | i I 3207 | ' T
<& Window Scan Data <& Window Scan Data
X Mesh Model Value B X Mesh Model Value B
o Corrected Scan Data o Corrected Scan Data

30

(em?)

Y position (um)

SAO/ZHAD 27Jung2

Z position (um)

o
<28 g X % £ 28 X % i
2 IO T SN S Y R e Sk st REEETTEEEE SR SRR ¥4
Eopg-t S B i S i St S & B [
3 5 | * % ]
P S Q

26 ° % R — 26 * ® ¥ Z 8

24| | | | 24| | | |
Q 200 400 600 Q 200 400 600

SAO/ZHAD 27Jund2

Figure 10: A Typical Window Scan Data Fit to The Mesh Model. Zr-L source, 5 mm aperture. Top two
figures show the Y and Z scan data fit to the mesh model. Bottom two figures show the same data after the
mesh correction. The mesh modulation effect is removed.
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The window scan measurement only covered three sources (Al, C and Zr) and 11 apertures (0.3 mm
through 20 mm). Before the window scan measurements, we did the window fixed measurement for all
five sources and 16 apertures (0.005 through 20 mm). Instead of scanning the counter, only one fixed
counter position was used for each aperture. In order to make mesh effect corrections for the window fixed
measurements, we had to know their exact counter positions. We do have a motor log which gives the
relative counter positions between all the window scan and window fixed measurements. However, there
were prime-Y moves during the measurement which make the motor log not very reliable. But we did the
beam centering for apertures ranging from 0.005 mm to 0.3 mm. The 0.3 mm aperture was the only one used
for both window scan and beam centering thus it linked the window fixed data and the window scan data.
There was no or very small Prime-Y move between 0.005 and 0.3 mm aperture window fixed measurements.
With this information, we were able to accurately locate the counter positions for apertures from 0.005
mm to 0.3 mm window fixed measurements and hence to make their mesh effect corrections. For the final
results, we use the window scan data for 0.3 to 20 mm apertures and window fixed data for 0.005 to 0.1 mm
apertures. Because there was no window scan measurement for Cu and Mo sources, we could only rely on
our motor log to make some rough mesh corrections for these two sources. Therefore the results for these
two sources have bigger errors.

6. FINAL RESULTS OF THE VETA-I ENCIRCLED ENERGY

Table 2 gives the final results and their errors for the VETA encircled energy. The final errors are less

Table 2. VETA-I Encircled Energy  units: cm?

Aperture X-ray lines
size (mm) C-K Cu-L Al-K Zr-L Mo-L
0.277 keV | 0.932 keV | 1.488 keV | 2.067 keV | 2.334 keV
0.005 4.375 3.362 2.959 0.516 0.155
0.010 8.839 8.471 7.498 1.352 0.349
0.025 31.651 24.662 24.302 3.636 0.954
0.050 65.126 49.312 49.001 7.270 2.129
0.100 123.797 97.395 94.425 14.521 4.271
0.300 214.293 167.884 165.682 24.939 7.784
0.750 217.538 181.863 166.690 25.664 8.011
0.500 220.655 186.698 168.720 26.085 7.987
1.000 217.422 179.857 169.617 26.207 8.164
1.500 219.620 180.507 170.602 26.536 8.233
2.000 217.813 178.935 170.995 27.119 8.374
3.000 222.311 186.224 173.035 26.982 8.999
5.000 220.197 174.568 173.674 27.445 9.040
7.500 221.697 190.402 174.769 27.691 9.272
10.000 219.958 185.656 174.259 27.804 8.772
20.000 223.037 182.731 179.007 28.706 8.497
Total Error 0.562% 0.612% 0.795%
Error due to 0.422% 0.470% 0.772%
Mesh Correction

than + 0.8% for Al, C and Zr sources, which exceeded the requirements (+ 2%) by a factor of 2.5. Figures 11,
12 and 13 are the plots of the encircled energy vs. the aperture sizes before and after the mesh corrections
for Al, C and Zr sources. These results were then used to compare with the expected values to get the
VETA point spread functions and the mirror surface figures.” they were also used to obtain the VETA total
effective area and mirror reflectivity.®
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