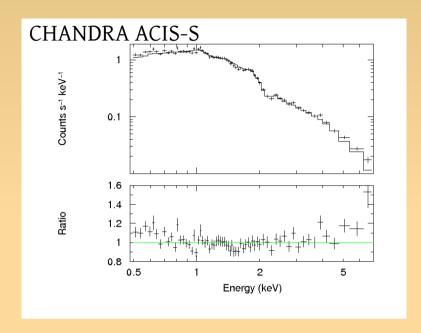
SOFT AND HARD X-RAY EXCESS EMISSION IN ABELL 3112 OBSERVED WITH CHANDRA

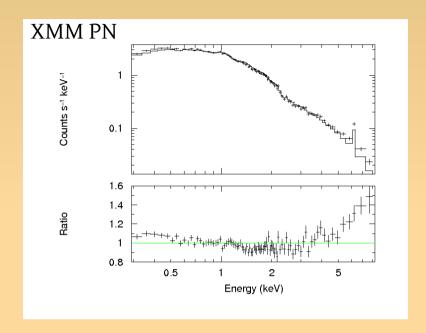
Max Bonamente (UA-Huntsville, MASA MSFC) Jukka Nevalainen (Helsinki Observatory) Richard Lieu (UA-Huntsville)

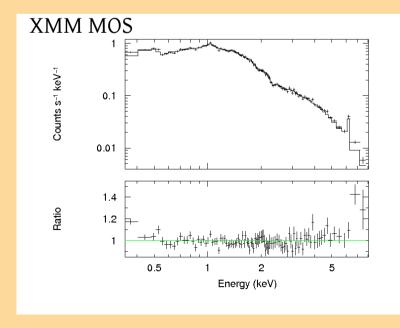
DATA AND DATA ANALYSIS METHODS

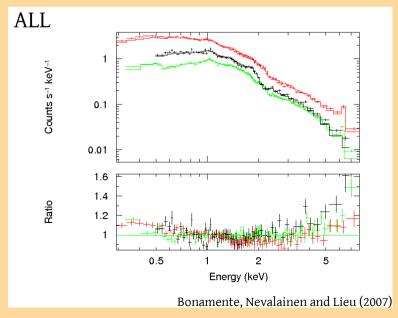
CHANDRA:

- Obs. 2516 (17.7 ks), 2216 (7 ks)
- CIAO 3.4 and CALDB 3.3 (same results also obtained with CIAO 3.3 and CALDB 3.2)
- Analyze only the 1-2.5' annulus
- Use blank-sky background
- Fit in 0.5-7 keV band

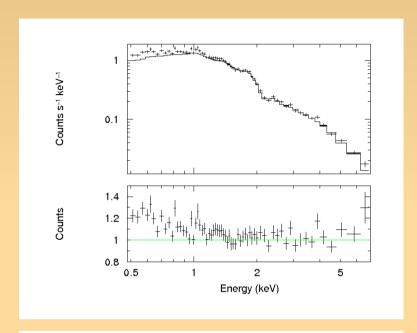

XMM-NEWTON:

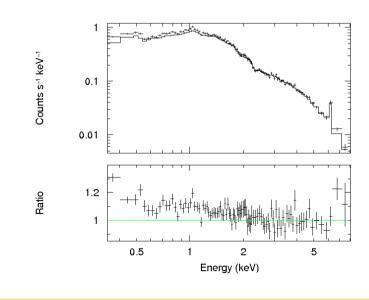

- Re-analyzed the Nevalainen et al. (2003) observation, 23 ks MOS data, 17 ks PN data
- SAS 7.0.0, calibration as of May 2007
- Use blank-sky from Nevalainen et al. (2005)
- Fit in 0.3-8 keV band

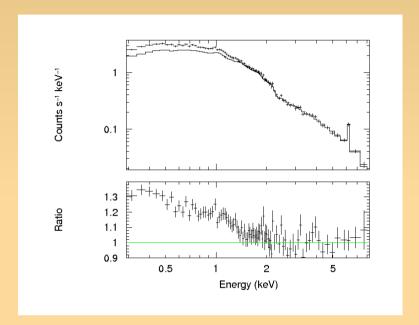

SPECTRAL FITS:

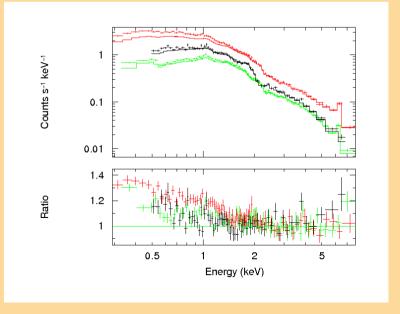

- Fit to a wabs*mekal model with Galactic N_{H} (fixed)
- Fit to Chandra data alone, and jointly to Chandra+XMM-NEWTON
- Fits to wide band (0.5-7/0.3-0.8 keV), soft band (0.5-4/0.3-4 keV) and hard band (2-7/2-8 keV)
- Addition of a power-law model and of a thermal model to explain residuals

FITS TO WIDE BAND

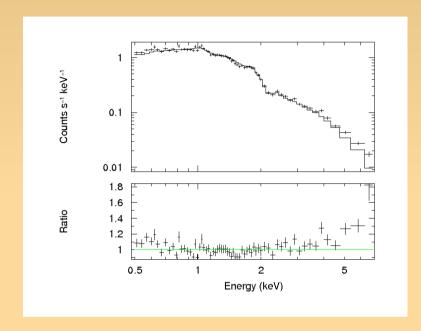


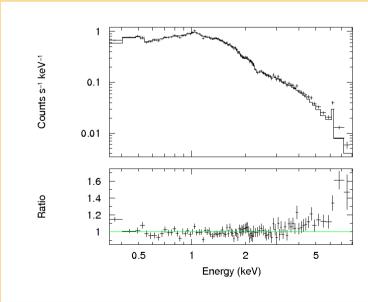


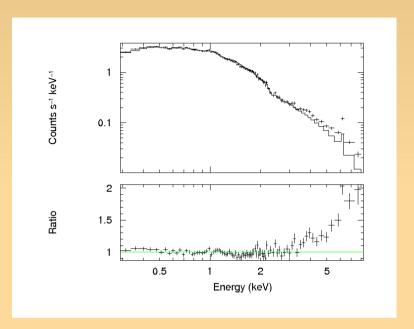

RESULTS OF SPECTRAL FIT

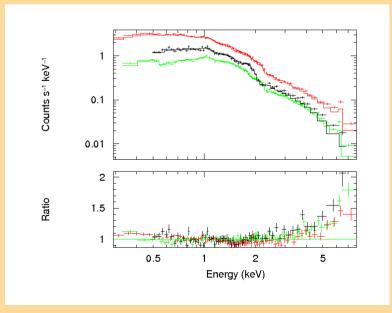

Table 1. SINGLE TEMPERATURE MODEL WITH FIXED AND VARIABLE N_H											
	Fixed Galactic $N_H = 2.6 \times 10^{20} \text{ (cm}^{-2}\text{)}$				Free N_H						
Data	$\chi^2/\mathrm{dof}\ (\chi_r^2)$	kT	A	Norm	$\chi^2/\mathrm{dof}\;(\chi^2_r)$		A	Norm	N_H		
A GTG	0.47 = (0.00 (4.00)	(keV)	0.40.10.05	$(\times 10^{-2})$	2010/200(110)	(keV)	0.5010.06	$(\times 10^{-2})$	$(10^{20} \text{ cm}^{-2})$		
ACIS	345.7/269(1.29)	4.94 ± 0.14	$0.40\pm_{0.05}^{0.05}$	1.01 ± 0.01	294.9/268(1.10)	$5.70\pm_{0.14}^{0.13}$	$0.50\pm_{0.06}^{0.06}$	0.94 ± 0.01	≤ 0.35		
PN	274.3/161(1.70)	$3.97\pm_{0.05}^{0.10}$	$0.23\pm_{0.02}^{0.02}$	0.97 ± 0.01	155.3/160(0.97)	$4.47\pm_{0.07}^{0.06}$	$0.32\pm_{0.02}^{0.02}$	0.91 ± 0.01	$1.10\pm_{0.1}^{0.2}$		
MOS	236.6/173(1.37)	$4.52\pm_{0.07}^{0.05}$	$0.34\pm_{0.03}^{0.03}$	1.05 ± 0.01	189.6/172(1.10)	$4.94\pm_{0.14}^{0.07}$	$0.39\pm_{0.02}^{0.04}$	1.00 ± 0.01	$1.34\pm_{0.23}^{0.23}$		
Joint	918.3/606(1.52)	$4.37\pm_{0.07}^{0.02}$	$0.29\pm_{0.01}^{0.02}$	1.04 ± 0.01	685.7/605(1.13)	$4.83\pm_{0.06}^{0.05}$	$0.38\pm_{0.03}^{0.02}$	0.97 ± 0.01	$0.98\pm_{0.13}^{0.13}$		
l		1		0.95 ± 0.01				0.99 ± 0.01			
				1.05 ± 0.01				0.87±0.01			

FITS TO HARD BAND





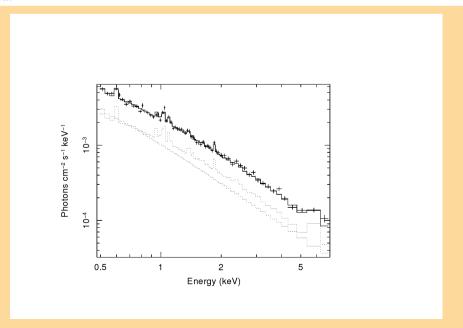




FITS TO SOFT BAND

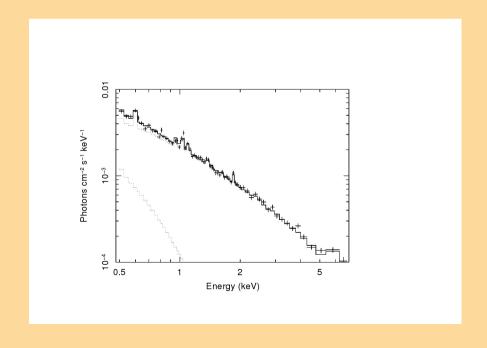
 $_{\rm Table~2.}~$ NARROW-BAND SINGLE TEMPERATURE MODEL WITH FIXED N_{H}

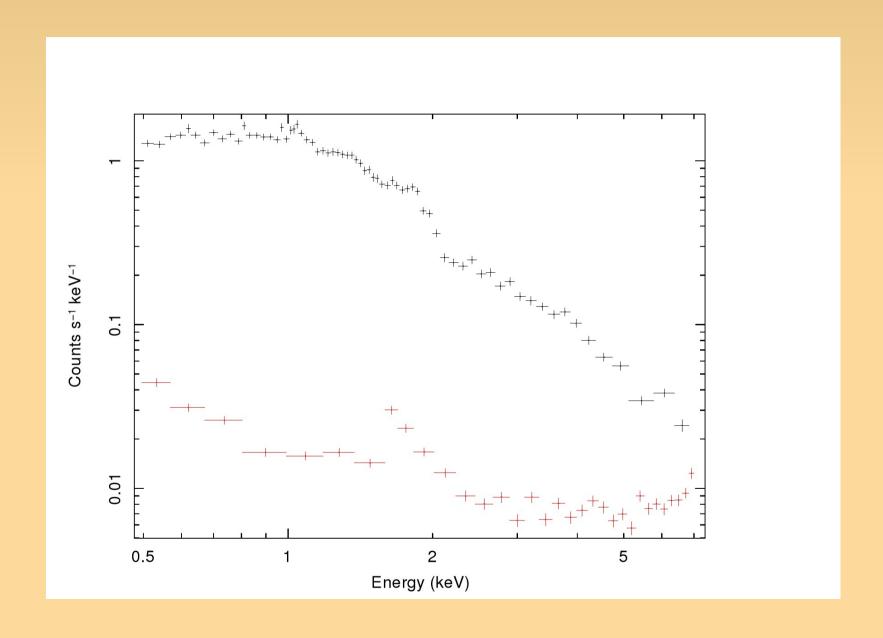
Data	$\chi^2/\mathrm{dof}\;(\chi_r^2)$	kT	A	Norm	
		(keV)		(10^{-2})	
Fit to	o 2-7 keV band	XMM-Newton data)			
ACIS	179.7/166 (1.08)	$5.88\pm_{0.36}^{0.57}$	0.45 ± 0.07	0.94 ± 0.03	
PN	73.4/105 (0.70)	$5.28\pm_{0.21}^{0.23}$	$0.32\pm_{0.03}^{0.04}$	0.82 ± 0.02	
	115.4/105 (1.05)	$5.34\pm_{0.19}^{0.22}$	0.37 ± 0.04	0.97 ± 0.02	
Joint	365.6/394 (0.93)	$5.31\pm_{0.13}^{0.14}$	$0.36\pm_{0.02}^{0.03}$	$0.98\pm_{0.01}^{0.02}$	
				0.81 ± 0.01	
				0.97 ± 0.01	
Fit to	0.5 -4 $keV\ band$	(0.3-4 keV f	or XMM-No	ewton data)	
ACIS	261.3/210 (1.24)	4.54 ± 0.014	0.29 ± 0.06	1.04 ± 0.02	
PN	137.0/108 (1.29)	$3.46\pm_{0.06}^{0.07}$	0.13 ± 0.02	1.01 ± 0.01	
	165.6/116 (1.43)	4.24 ± 0.08	0.26 ± 0.03	1.08 ± 0.01	
Joint ^a	638.6/437 (1.46)	$3.93\pm_{0.05}^{0.06}$	$0.20\pm_{0.03}^{0.01}$	1.07 ± 0.01	
				0.97 ± 0.01	
				1.10 ± 0.01	


^aFor the joint fit, the three normalizations apply respectively to the ACIS, PN and MOS data.

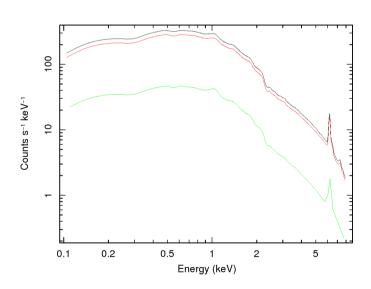
RESULTS OF NON-THERMAL FITS TO RESIDUALS

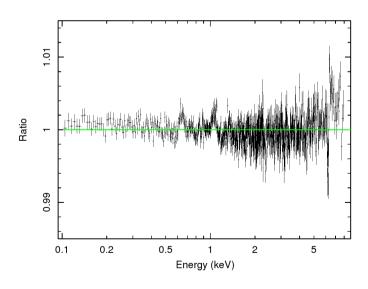
Table 3. NON-THERMAL MODEL								
Data	$\chi^2/\mathrm{dof}\;(\chi_r^2)$	kT	A	Norm.	α	$L_{42}^{(a)}$		
		(keV)		$(\times 10^{-2})$		$(10^{42} \text{ erg s}^{-1})$		
ACIS	195.4/267 (1.10)	$5.36\pm_{0.56}^{0.43}$	$0.87\pm_{0.10}^{0.25}$	$0.50\pm_{0.11}^{0.14}$	$1.79\pm^{0.11}_{0.06}$	74.4		
	118.6/159 (0.74)					61.0		
MOS	185.1/172 (1.08)	$4.44\pm_{0.25}^{0.19}$	0.48 ± 0.05	0.74 ± 0.06	$1.74\pm_{0.06}^{0.07}$	49.8		
Joint ^b	643.7/604 (1.07)	$4.59\pm^{0.09}_{0.08}$	$0.50\pm_{0.02}^{0.03}$	0.69 ± 0.10	$1.85\pm_{0.04}^{0.02}$	46.0		
				$0.59\pm_{0.01}^{0.03}$		56.0		
				0.71 ± 0.01		56.0		


 $^{^{\}mathrm{a}}L_{42}$ is the unabsorbed luminosity of the non-thermal model in the 0.5-7 keV band.


^bFor the joint fit, the three normalizations apply respectively to the ACIS, PN and MOS data.

RESULTS OF THERMAL FITS TO RESIDUALS


Table 4. TWO-TEMPERATURE MODEL								
$\chi^2/\mathrm{dof}\;(\chi_r^2)$	$kT_{ m hot}$	A	Norm.	$kT_{\rm warm}$	A	Norm.		
	(keV)		$(\times 10^{-2})$	(keV)		$(\times 10^{-3})$		
296.6/266 (1.11)	$5.61\pm_{0.33}^{0.27}$	$0.51\pm_{0.05}^{0.07}$	0.94 ± 0.03	$0.34\pm_{0.12}^{0.32}$	≤ 2.5	$0.14\pm_{0.03}^{0.17}$		
117.8/158 (0.74)	$5.34\pm_{0.30}^{0.23}$	$0.38\pm_{0.04}^{0.03}$	0.78 ± 0.04	$0.89\pm_{0.16}^{0.20}$	≤ 0.17	$0.9\pm_{0.03}^{0.04}$		
178.8/170 (1.05)	$4.68\pm_{0.07}^{0.10}$	0.39 ± 0.03	1.03 ± 0.01	≤ 0.10	≤ 0.04	$3.39\pm_{1.02}^{1.59}$		
654.5/603 (1.09)	$5.12\pm_{0.05}^{0.09}$	$0.39\pm_{0.02}^{0.03}$	0.94 ± 0.01	$0.62\pm_{0.10}^{0.04}$	≤ 0.01	$0.24\pm_{0.01}^{0.02}$		
			0.59 ± 0.01					
			0.71 ± 0.01					
	$\chi^2/\text{dof}(\chi_r^2)$ 296.6/266 (1.11) 117.8/158 (0.74) 178.8/170 (1.05)	$\chi^2/\text{dof} (\chi_r^2)$ kT_{hot} (keV) $296.6/266 (1.11) 5.61\pm^{0.27}_{0.33}$ $117.8/158 (0.74) 5.34\pm^{0.23}_{0.30}$ $178.8/170 (1.05) 4.68\pm^{0.10}_{0.07}$	$\chi^2/\text{dof} (\chi_r^2)$ kT_{hot} A (keV) $296.6/266 (1.11) 5.61\pm_{0.33}^{0.27} 0.51\pm_{0.05}^{0.07}$ $117.8/158 (0.74) 5.34\pm_{0.30}^{0.23} 0.38\pm_{0.04}^{0.03}$ $178.8/170 (1.05) 4.68\pm_{0.07}^{0.10} 0.39\pm0.03$	$\chi^2/\text{dof} (\chi_r^2)$ kT_{hot} A Norm. (keV) $(\times 10^{-2})$ $296.6/266 (1.11)$ $5.61\pm_{0.33}^{0.27}$ $0.51\pm_{0.05}^{0.07}$ 0.94 ± 0.03 $117.8/158 (0.74)$ $5.34\pm_{0.30}^{0.23}$ $0.38\pm_{0.04}^{0.03}$ 0.78 ± 0.04 $178.8/170 (1.05)$ $4.68\pm_{0.07}^{0.10}$ 0.39 ± 0.03 1.03 ± 0.01 $654.5/603 (1.09)$ $5.12\pm_{0.05}^{0.09}$ $0.39\pm_{0.02}^{0.03}$ 0.94 ± 0.01 0.59 ± 0.01	$\chi^2/\text{dof}(\chi_r^2)$ kT_{hot} A Norm. kT_{warm} (keV) $(\times 10^{-2})$ (keV) $(\times 10^{-2})$ $0.34\pm_{0.12}^{0.32}$ $0.51\pm_{0.05}^{0.07}$ 0.94 ± 0.03 $0.34\pm_{0.12}^{0.32}$ $0.34\pm_{0.12}^{0.32}$ $0.38\pm_{0.04}^{0.03}$ 0.78 ± 0.04 $0.89\pm_{0.16}^{0.20}$ $178.8/170$ (1.05) $4.68\pm_{0.07}^{0.10}$ 0.39 ± 0.03 1.03 ± 0.01 $0.62\pm_{0.10}^{0.04}$ $0.62\pm_{0.10}^{0.04}$ 0.59 ± 0.01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		



EFFECT OF PROJECTION FROM OUTER ANNULI

- ullet Simulations based on Vikhlinin (2006) temperature profile, nearly flat in 0.1-0.3 $m r_{_{500}}$
- full 1-2.5' cylinder (black)
- only isothermal region (0.1-0.3 r_{500}) in red
- only outer region (>0.3 r_{500}) in green

• Virtually no residuals to fit to an isothermal spectrum

CONCLUSIONS

- Presence of low and/or high energy X-ray residuals in Chandra spectrum of A3112
- Confirmation of earlier detection with XMM-Newton
- Differences in the amount of residuals between instruments remain
- Residuals not due to background subtraction, or to projection effect
- Possible effects of these residual is to indicate cooler gas in clusters, and/or non-thermal pressure
- Another cluster with outstanding XMM-NEWTON excess is AS1101, which has only 10 ks Chandra obs.
 - worthwhile to obtain deeper data for both A3112 and AS1101 for further investigations