aperture
the generalized aperture program
version 2.2.0

Diab Jerius D. Nguyen M. Tibbetts

August 22, 2013

Contents

1 Copying 1-1
2 Overview 2-2
2.1 Requirements L e 2-2
2.2 Designo e e 2-3
2.2.1 Aperture Positions and Orientations 2-3

2.2.2 The Aperture Description 2-3

2.2.3 The Central Engine e 2-3

2.24 The Back End Modules 2-4

2.2.5 Detailed Operation 2-4

3 User’s Guide 3-1
3.1 Program Parameters L 3-1
3.2 Constructing an Aperture L e e e 3-2
3.2.1 Componentso 3-2

3.2.2 Placement 3-2

3.2.3 How to approach aperture construction L. 3-3

3.2.4 The nitty gritty detailso 3-4

3.3 Writing amodule Lo 3-7

A Lua Accessible utility functions A-1
Lua Aperture Instantiation Functions B-1

Chapter 1
Copying

Copyright (©2006-2010 Smithsonian Astrophysical Observatory

This file is part of aperture

aperture is free software: you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see
ihttp://www.gnu.org/licenses/;..

1-1

Chapter 2

Overview

The generalized aperture program (aperture) is designed to simulate the effects on the incident ray
stream of apertures in physical obstructions (such as the X-ray and thermal baffles). It can handle a
wide variety of aperture shapes, and has provisions to allow alteration of the rays by the apertures. The
philosophy behind aperture is that a geometrically complicated aperture may be modeled by a combination
of geometrically simpler apertures. Rather than modeling each complex aperture with a separate program,
if a flexible means of specifying the combinations of simple apertures were devised, a single program could
model a wide range of shapes.

2.1

Requirements

The generalized aperture program meets the following requirements:

read and write rays in the bpipe format.
allow the combination of multiple apertures to form a single aperture.
provide a flexible means of specifying the positions and sizes of the apertures.

provide for the creation of multiple ensembles of apertures, known as assemblies. An assembly could
refer to a physically distinct structure, such as a single plate in a multi-plate baffle; in rare circumstances
two or more assemblies are used to model a single physical object. Assemblies may optionally be divided
into sub-assemblies, which may be nested.

provide the capability of specifying global rotations and translations of individual apertures as well as
assemblies.

provide for the blocking or passing on of rays, as well as alteration of rays by apertures, such as
redirection, generation of new rays, and the modification of ray parameters.

If a ray is redirected by an aperture, aperture shall provide the option of rescanning all of the apertures
in the current assembly to ascertain of the redirected ray would interact with them.

If any aperture accepts a ray, the ray is deemed to have cleared the current assembly, and is moved to
the next assembly.

provide an easy means of adding additional aperture shapes

2-2

2.2 Design

The modeling of apertures as combinations of sub-apertures, as well as the recognition that the bookkeep-
ing involved in tracking the rays through the apertures was independent of any particular type of aperture,
led to the structuring of the program into three components:

e a front end, which parses the description of the openings and generates lists of apertures to check the
rays against

e a central engine, which reads the rays and checks them against the apertures in the lists

e a back end, composed of modules which model each of the apertures and which are called upon by the
front end and central engine

The three sections of the program are encapsulated so that a minimum of information is exchanged
between them, permitting integration of new modules into the back end without affecting the rest of the
program.

2.2.1 Aperture Positions and Orientations

Rather than have the user assign absolute positions and orientations to each aperture, aperture uses the
concept of a local coordinate system in which each aperture is placed. It keeps track of the transformations
required to map between the external coordinate system in which the input rays’ positions and directions are
specified and the apertures’ local coordinate systems. It provides for the hierarchical “layering” of coordinate
systems:

1. a global coordinate system, relative to which assemblies are specified
2. assembly coordinate systems, relative to which either sub-assemblies or apertures are specified

3. sub-assembly coordinate systems, relative to which either nested sub-assemblies or apertures are spec-
ified

At each level, changes to the current coordinate system do not affect the higher levels’ coordinate systems.

2.2.2 The Aperture Description

Specifying lists of positions and sizes of apertures would suffice to completely describe an opening, but
would be tedious and error prone. The route taken here is to provide a language with which to lay out
the apertures. The language, Lua, is a small language with flow control (if...then, while..do..end,
etc.), functions, floating point arithmetic, multi-dimensional arrays and structures, and implicit dynamical
memory allocation and deallocation. The front end provides Lua callable routines to translate and rotate
the current coordinate systems as well as to create assemblies and sub-assemblies. The back end modules
provide functions, callable by Lua, which create instances of apertures. Both assemblies and apertures are
kept in lists; there is one list of assemblies, but many lists of apertures, one list per assembly. For more
information on writing aperture description programs, see §3.2.

2.2.3 The Central Engine

The central engine takes the lists of assemblies and apertures created by the front end, and compares
each input ray to the apertures, in turn. It calls functions provided by the back end modules which do the
actual checking of the rays. It provides the logic to move the ray to the next assembly should an aperture
accept a ray and pass it along.

2-3

assembly 1 assembly 2

aperture 1.1 aperture 2.1
aperture 1.2 aperture 2.2

Figure 2.1: Assembly Hierarchy

assembly n

2.2.4 The Back End Modules

Each back end module consists of two components. The first is called by the user’s aperture definition
script, and creates an instance of an aperture with a given set of aperture specific parameters, attaching
it to the list of apertures for the current assembly. The second component contains the logic necessary
to determine if a ray falls within it and is affected by it. Apertures can simply pass or block rays, but,
depending upon the complexity of the aperture that they are modeling, can also redirect the rays (e.g.
reflection), modify them, or generate new rays (e.g. flourescence). More information on the structure of
modules is contained in §3.3.

2.2.5 Detailed Operation

The Lua program creates assemblies and sub-assemblies via calls to begin_assembly, end_assembly,
begin subassembly and end _subassembly. Assemblies are represented internally as a list of Assembly
structures. Sub-assemblies are temporary constructs which exist only to allow stacking of the current trans-
formation matrix.

The back end modules called from the Lua program create instances of apertures by creating aperture-
specific data objects which contain the information necessary to fully describe the aperture. For example,
an annulus is described by its inner and outer radius; a rectangle by its height and width. The module
itself is described by an ApertureModule structure, which contains pointers to standard routines provided
by the module (aperture instantiation, initialization, ray processing, cleanup). This structure and the data
object are passed to the front end utility routine newnode, which encapsulates them inside of an abstract
object, Aperture, and inserts it at the end of the list of apertures for the current assembly. Conceptually,
the hierarchy of assemblies is as shown in Figure 2.1.

The processing of rays begins by reading in a ray. This is usually done from the specified input stream,
but may be done from a a special internal ray stack if any rays have been generated by an aperture. It then
determines the first valid assembly which the ray will interact with. Usually this is the first assembly, but if
the ray is one generated by an aperture, the first valid assembly is determined by the assembly to which the
generating aperture belongs.

Beginning with this first valid assembly, the central engine simulates the interactions of the ray with
the apertures by an in-order traversal of the assembly’s aperture list. At each visit of an aperture, the
module associated with the aperture is passed the data object specific to the aperture and a copy of the
ray data packet. It uses these data to determine whether it can process the ray, and returns a code to the
central engine indicating whether or not it has accepted the ray for processing and the state of the ray after

2-4

processing. Normally the module does not alter the contents of the ray data packet; passing it a copy is a
safety measure. In the event that it has done so purposefully, it signals (via the return code) the central
engine to transfer the contents of the copied ray data packet to the original, so that the remaining apertures
interact with the modified ray.

Depending upon the returned code, the central engine may discard the ray and read a new one, begin
processing the next assembly in line, or re-start the traversal of the current assembly. The last action is
taken if the option loop-mode is enabled and rays have been redirected or generated. It is the only means
by which a ray can successfully interact with more than one aperture in an assembly.

The defined return codes and the reactions of the central engine are given in Table 2.1.

Table 2.1: Return Codes from Module Ray Processing Functions

NOTAPPLICABLE Pass the ray to the next aperture in the assembly, or begin
the next assembly.

BLOCKED Discard the current ray, and process the next ray.

PASSED The current ray is done with the current assembly and will
be processed by the next assembly. That is, if aperture
2 of assembly 2 returns PASSED, then the next aperture
to be processed is aperture 1 of assembly 3, skipping the
remaining apertures in assembly 2.

REDIRECTED If the loop-mode option is on, then reprocess all of the
apertures in the current assembly. That is, if aperture
2 of assembly 2 returns REDIRECTED, the next aperture
processed will be aperture 1 of assembly 2. If the loop-
mode option is off, then the behavior is the same as if
MODIFIED were returned.

GENERATE The module function has created new rays. It does this
by passing the rays to the push_photon function, which
pushes copies onto the system ray stack. The newly gen-
erated rays are only valid for assemblies subsequent to the
current one, unless loop-mode is on, in which case they are
valid for the current assembly as well. The central engine
discards the current ray, reads the next ray (which has been
generated by the module), advances to the valid assembly,
and begins processing the ray through that assembly.

MODIFIED The module has modified its copy of the ray data packet,
and the central engine transfers the contents of the mod-
ified copy to its original data packet. It then continues
processing the ray as if PASSED had been returned.

2-5

Chapter 3

User’s Guide

3.1 Program Parameters

aperture uses the standard parameter interface. The parameters it recognizes are:

aperture

override

input

output

statfname

loop

help

version

the filename of the Lua program which defines the aperture

Lua code that will be made available to the Lua definition program as the
Lua function override (see Appendix A for more information). This can
either by actual code, for example

aperture override=’energy=1.49; shell=3’

or it may be the name of a file containing the Lua code. In the latter case,
the first character should be the @ character:

aperture override=Q@code.lua

the name of the input ray stream. If it is the string stdin, aperture will
read from the standard input stream.

the name of the output ray stream. If it is the string stdout, aperture
will write to the standard output stream.

the filename to output the accumulated statistics of the components. The
output file is an rdb table containing a column for the name of the compo-
nent and columns for all possible outcome of the interaction of the ray with
the component. The prefix n and w (for example nblocked and wblocked)
stands for the number and weight respectively.

a boolean variable indicating that rays that have been redirected by an
assembly should be checked against that assembly first, rather than being
checked against the next assembly.

a boolean variable indicating that aperture should print out usage infor-
mation should be printed and exit.

a boolean variable which, if true, indicates that aperture should print out
its version information and exit.

3-1

3.2 Constructing an Aperture

Aperture construction consists of placing geometric components (such as circles, polygons, wedges) into
assemblies.

3.2.1 Components
The currently available components include:

annulus an annulus
circle a circle
ellipse an ellipse

polygon a polygon

rect a rectangle
strut an infinitely tall rectangle
wedge an angular wedge of infinite extent

wedger an angular wedge with an maximum outer radius, i.e. a pie slice
wedger2 an angular wedge with an inner and outer radii

Some components are mostly of diagnostic aid:

ell an component that looks like the letter ‘L’
block block all rays
pass pass all rays

print_ray print the rays’ coordinates and directions

All of the components are described more fully in Appendix B.

3.2.2 Placement

Placement of an component is done by specifying a set of coordinate transformations which define the
location and orientation of components’ intrinsic coordinate system (components are centered at the origin
in their X —Y plane). Each transformation updates the current transformation matriz (CTM), which maps
rays in the global coordinate system to the current transformed system. Components are assigned their
position and orientation from the CTM existent when they are instantiated.

Coordinate transformations may be specified as either intrinsic or extrinsic transformations. Intrinsic
transformations are performed relative to the current coordinate system. For example, an intrinsic rotation
about the X axis followed by one about the Y axis will be about the transformed Y axis, not that existing
prior to the rotation about the X axis. In intrinsic transformations the world is transformed around you;
your coordinate system is always fixed. Extrinsic transformations are always relative to a fixed external
system independent of the orientation in space of the current coordinate system.

When aperture begins, the CTM is set to the identity matrix. The top-level coordinate system mapped
by this CTM (which exists outside of the assemblies) is referred to as the the global coordinate system (see
§2.2.1), and is the initial CTM for an assembly. Changes made to the CTM inside of an assembly do not
affect the global coordinate system. Inside of an assembly, extrinsic transformations are performed relative
to the coordinate system existent at the time the assembly was created.

Within an assembly, aperture uses the concept of logical (possibly nested) sub-assemblies to manage
complex transformations. The initial CTM of a sub-assembly is the CTM of its parent at the time the
sub-assembly is created. As with assemblies, transformations within a sub-assembly do not affect the parent
assembly or sub-assembly. Inside of a sub-assembly extrinsic transformations are performed relative to
the coordinate system existent at the time the sub-assembly was created. Unlike in assemblies, there is
no intrinsic meaning to the collection of components in a sub-assembly. They are merely constructs to
manipulate coordinate systems.

3-2

Figure 3.1: An example aperture

Internally, aperture keeps a stack of transformation matrices, one for each assembly or sub-assembly
which is currently active (e.g., those begun but not ended). Each matrix specifies the transformation which
will be applied to the previous entry in the stack. For design purposes, the CTM (which is the inverse of
the product of the matrices in the stack), the stack top, or the full stack may be output (see Appendix A
for more information).

3.2.3 How to approach aperture construction

When building a complicated opening, components are layered on top of each other, allowing one to mask
or “cut out” sections to block rays or let rays through. Components are collected into assemblies which in
practice usually refer to physical objects (such as a plate with holes cut into it). It is sometimes useful to
model obstructions composed of a single piece with multiple assemblies. Assemblies should be ordered in
increasing axial location.

When building assemblies, it is important to understand how aperture guides a ray through them. A
ray is checked against all components in an assembly in the order that they are specified by the user. If a
component accepts responsibility for a ray (e.g. it falls within its geometric area), it can either block the
ray or pass it on. If the component cannot handle the ray, it notifies the program that it is not applicable,
and the ray is checked against the next component in the assembly. In the event that no component claims
responsibility for the ray, it can either be considered blocked or passed, at the user’s discretion. If a ray is
blocked, aperture fetches the next ray and starts over. If it is passed, the program jumps directly to the
next assembly and begins the checking process there.

It is somewhat more expensive to jump to the next assembly than it is to jump to the next component
within an assembly. It behooves one to model an aperture in a single assembly if possible. If there are many
components in a single assembly, it may take time to check rays against all of them. The trick is thus to get
rid of as many rays as possible early on in the assembly, and only pass good ones on to the next assembly. In
order to make the rejection process more efficient, most of the provided components can act as reverse masks.
For example, the annulus component can act upon rays which fall within the annulus, and either block or
accept those, or it can act upon those which fall outside of the annulus, and act on those. In addition, while
assemblies normally block rays which are ignored by all of their components, an assembly can be instructed
to pass on the ignored rays. This feature can be used instead of the pass component, which, because it is
an component, adds overhead.

As an illustration of how to built an aperture from components, imagine trying to model an aperture
which looks like an annulus with twelve opaque struts crossing the annulus. Figure 3.1 shows the clear
aperture (as seen by the rays). Assume that most of the rays that are lost at this aperture are clipped by
the annulus, not the struts. Here are a few of ways of constructing it:

3-3

deg2rad = 3.14159265358979/180.0
strut_width = 2

r_i = 10

r_o =12

begin_assembly()

-- twirl the struts
begin_subassembly ()
theta = 0
dtheta = 30
while theta < 180 do
strut(strut_width, 1, 0)
rotate_z(dtheta * deg2rad)
theta = theta + dtheta
end
end_subassembly()

annulus(r_i, r_o, 1, 1)

end_assembly()

Figure 3.2: A first cut at the example aperture

1. Check the struts first, blocking out all rays which fall within the struts, then check the annulus, passing
all those which falls inside of it. Since most of the rays that are blocked fall outside of the annulus,
rather than within the struts, this is inefficient.

2. Check the annulus first, passing the rays that fall within it. However, because passed rays move on to
the next assembly, the struts will have to be modeled as a separate assembly, which introduces extra
overhead that isn’t necessary. In addition, the rays which aren’t claimed by the struts in the second
assembly will need to be claimed, either by the pass component, or by the assembly.

3. Check against the outside of the annulus, blocking the rays which fall there. In this case the annulus
component will not deal with those rays which fall within it, and they will be passed on to the next
component (not the next assembly). Check against the struts next, blocking those that fall within,
and, finally, pass on the unclaimed rays.

It’s important to get the sequence of components correct. Since every aperture is different, experimenta-
tion is the key to success. There is always more than one way to create it, but some are more efficient than
others. Checking a ray against an component has an invocation cost as well as the cost of transforming the
ray into the component’s reference frame and the cost of whatever component specific processing is required.
The first two costs are the same for each component. The exceptions to this rule are the pass and block
components, which have only an invocation cost, as they don’t care where the ray is and do no processing
of the ray.

3.2.4 The nitty gritty details

Aperture descriptions are written the language Lua. Lua is a lightweight language which provides dynamic
variable typing, automatic allocation (and freeing) of storage space, functions, flow control and decision
branches. aperture provides some special functions that translate and rotate the coordinate system and
place and size the components.

3-4

deg2rad = 3.14159265358979/180.0
strut_width = 2

function do_struts()
local theta = 0
local dtheta = 30

begin_subassembly()

while theta < 180 do
strut(strut_width, 1, 0)
rotate_z (dtheta * deg2rad)
theta = theta + dtheta

end

end_subassembly()

end

Figure 3.3: A Lua function to draw struts

Figure 3.2 is a Lua program which implements the first example in the previous section. It illustrates
most of the required parts of an aperture description. Before any components can be placed within an
assembly, the assembly must be initialized with the begin_assembly function. It must always finish off an
assembly with end_assembly. Sub-assemblies are treated similarly. Here the script accepts an assembly’s
default behavior of blocking rays which are not claimed by the assembly’s components. Had the initialization
call been begin_assembly("pass"), the assembly would have passed unclaimed rays. The function can also
take the argument "block" to specify the default behavior. The user will be alerted if an assembly is ended
prematurely (or not ended at all).

The struts are placed at even angular increments. Since they are infinitely tall, they are only distributed
in the upper two quadrants. Because coordinate transformations are cumulative, the struts are created inside
of a sub-assembly to isolate their positioning from that of the annulus. Since the struts’ coordinate systems
are only rotated with respect to the global system, it really doesn’t matter to the annulus component, but in
general, its wise to encapsulate things into sub-assemblies when mucking about with the coordinate system.
The program can manipulate the transformation matrix inside a sub-assembly with impunity.

The strut and annulus functions take a few more parameters than might be intuitively obvious. The
first extra parameter instructs the component whether to deal with rays that are interior or exterior to the
component (1 means interior), the second specifies whether the component is transparent (1) or opaque (0).
Most components will have similar parameters.

The second example from the previous section required multiple assemblies. In order to keep things a bit
clearer, we define a function (Figure 3.3) that will be used in subsequent examples to place the struts. Note
that in Lua, just as in Pascal, all functions must be defined before use. Figure 3.4 shows the remainder of
the code. Here the ability of an assembly to pass unclaimed rays is used. Figure 3.5 contains the code for
the last, most efficient approach.

These examples have only rotated coordinates about the z axis. There are additional rotation functions
for the other axes, as well as a coordinate translate function. There are also some utility functions to print
out the assembly and the transformation stack. These are documented in Appendix A.

As a final more complicated example, the following is the code used to create Figure 3.6.

deg2rad = 3.14159265358979/180.0

—-- ears are drawn as reflections across the x=0 axis.

3-5

r_i= 10
o =12

begin_assembly("block")
annulus(r_i, r_o, 1, 1)
end_assembly()

begin_assembly("pass")
do_struts()
end_assembly()

Figure 3.4: A second cut at the example aperture

i=10
o =12

begin_assembly("pass")
annulus(r_i, r_o, 0, 0)
do_struts()

end_assembly()

Figure 3.5: A third cut at the example aperture

-- they just touch the face.
function draw_ear (angle, face, ear)
begin_subassembly ()
rotate_z (angle * deg2rad)
translate(face + ear, 0, 0)
circle(ear, 1, 1)
end_subassembly ()
end

function draw_ears(angle, face, ear)
draw_ear (90 - angle / 2, face, ear)
draw_ear (90 + angle / 2, face, ear)
end

-- eyes are also reflected across the x=0 axis
function draw_eyes (y, sep, eye)
begin_subassembly ()
translate(-sep/2, y, 0)
circle(eye, 1, 0)
translate(sep, 0, 0)
circle(eye, 1, 0)
end_subassembly ()
end

-- the smile is drawn as a transparent ellipse almost covering
-- an opaque ellipse. the transparent must be drawn first.
function draw_mouth (y, a, b, sep)

begin_subassembly ()

translate(0, y, 0)

ellipse(a , b , 1, 1)

3-6

Figure 3.6: A famous aperture

translate(0, -sep, 0)
ellipse(a , b , 1, 0)
end_subassembly ()

end

face = 5
ear = 3.5

-- the overall scheme is to draw the opaque "cut outs" first:
-- the eyes, the nose, and the mouth. then we accept all of the
-- rays through the face and ear apertures
begin_assembly()
draw_eyes(1, 4, 1)
draw_ears(80, face, ear)
-- nose
begin_subassembly ()
translate(0, -1, 0)
circle(0.7, 1, 0)
end_subassembly ()
draw_mouth(-1, 2.5, 2, 0.5)

circle(face, 1, 1)

end_assembly ()

3.3 Writing a module

Writing modules is much too complicated for mere mortals.

3-7

Appendix A

Lua Accessible utility functions

These functions are provided by the front end of aperture to create assemblies and sub-assemblies,
manipulate the local coordinate system, and provide diagnostic output. They are called from the user’s Lua
aperture definition program.

begin_assembly(["pass" | "block"])
Begin an assembly. The current transformation matrix is set equal to the global transformation matrix.
The argument is optional, and is one of the specified strings. If the argument is "pass", rays which are
not claimed by any components in an assembly are passed on to the next assembly. If the argument
is "block", rays which are not claimed by any components in an assembly are discarded. This is the
default behavior if no argument is given.

begin_subassembly()
Begin a sub-assembly. The current transformation matrix is set equal to that of the parent assembly or
sub-assembly.

end_assembly()
Signify the end of an assembly. The current transformation matrix is now the global transformation
matrix.

end_subassembly()
Signify the end of a sub-assembly. The current transformation matrix is now that of the parent assembly
or sub-assembly.

get_TM_stack_top(inverse)
This function returns the top transformation matrix on the stack as a set of nested tables. Transformation
matrices are homogenous 4 X 4 matrices encoding both rotation and translation. If the inverse argument
is present and true, the inverse of the CTM is returned.

override()
In some cases it’s nice to be able to provide values to the Lua program from the aperture parameter file
(and thus the command line which invoked aperture). The aperture program parameter override is
used to specify Lua code to be passed to the program. override may have three ‘values’:

e it may contain Lua code, which will be inserted into a Lua function called override (). For example,
if the value of override is "a=1;b=2;", the following code would be generated:

function override()

a=1;
b = 2;
end

e it may be empty, in which case an empty Lua function override () will be generated:

function override()
end

e it may contain a filename (signified by the first character of the value being an “@” character, i.e.,
Qoverride.lua). The file should contain a complete definition of a Lua function called override().
For instance, to duplicate the effects of the first item in this list, the file should contain

function override()

a=1;
b = 2;
end

It is guaranteed that there will always be an override() function, even if it is empty, so that a call
to override() can be made with impunity. The following snippet of code illustrates how to use this

functionality:
a = 2;
b = 3;

override();

If the override parameter is empty, then the call to override() does nothing. However, suppose that
the override parameter contains the string "a=1;b=2;". In this case, the values of a and b will be
changed as specified.

print_assembly()
This function will print to the standard error stream the identification number, type and forward and
backward transformation matrices for the current assembly.

print_CTM()
Print the current transformation matrix to the error stream

print_TM_stack()
Print the full transformation matrix stack to the error stream

print_TM_stack_top()
Print the transformation matrix at the top of the stack to the error stream

rotate(matrix, transform_type)
Rotate the local coordinate system using the provided 3 x 3 matrix. The matrix is specified as a table,
with each row in the matrix is specified as a subtable. For example, to rotate about the X axis by 90°:

rotate({ { 1, o, 0¥, { 0, 0, 13} { 0, -1, 03} 3})

transform type is an optional string (either "intrinsic" or "intrinsic") indicating whether the
transformation is intrinsic or extrinsic. It defaults to "intrinsic".

rotatex(delta_theta, transform_type)
Rotate the local coordinate system about the X by the given angle (in radians). transform_type is an
optional string (either "intrinsic" or "intrinsic") indicating whether the transformation is intrinsic

or extrinsic. It defaults to "intrinsic".

rotate_y(delta_theta, transform type)
Rotate the local coordinate system about the Y axis by the given angle (in radians). transform type
is an optional string (either "intrinsic" or "intrinsic") indicating whether the transformation is
intrinsic or extrinsic. It defaults to "intrinsic".

A-2

rotatez(delta_theta, transform_type)
Rotate the local coordinate system about the Z axis by the given angle (in radians). transform type
is an optional string (either "intrinsic" or "intrinsic") indicating whether the transformation is
intrinsic or extrinsic. It defaults to "intrinsic".

transform(matrix, transform_type)
Transform (rotate and translate) the local coordinate system using the provided 4 x 4 homogenous matrix.
The matrix is specified as a table, with each row in the matrix is specified as a subtable. For example,
to rotate around the point (1,0,1) about the Z axis by 90°:

transform({

{ o, 1, o0, 03},

{-1, o0, 0, O,

{ o, o0, 1, o0},

{ 1, -1, o0, 13},
»

transform type is an optional string (either "intrinsic" or "intrinsic") indicating whether the
transformation is intrinsic or extrinsic. It defaults to "intrinsic".

translate(delta x, delta.y, delta=z, transform_type)
Translate the local coordinate system by the given amount. transform_type is an optional string (either
"intrinsic" or "intrinsic") indicating whether the transformation is in¢rinsic or extrinsic. It defaults
to "intrinsic".

Appendix B

Lua Aperture Instantiation Functions

These functions are provided by the back end modules to instantiate a component in the current local
coordinate system. They are called from the user’s Lua aperture definition program. Most of the functions
optionally take a final argument, which is a Lua table.

annulus(inner_radius, outer_radius, interior, transparent, [{label=name}])
Insert an annulus lying in the x — y plane, centered at the origin of the local coordinate system. The
annulus has the specified inner and outer radii. If interior is non-zero, the component will operate on
rays found within it, otherwise it operates on those that are outside. If transparent is non-zero, the
component will pass rays, otherwise it will block them. The optional argument label may be used to
specify the name of the component.

block()
Block all rays. Use this as a diagnostic aid to stop the processing of any rays which have made it thus
far in the current assembly.

circle(radius, interior, transparent, [{label=name}])
Insert a circle lying in the x — y plane, centered at the origin of the local coordinate system. The circle
has the specified radius. If interior is non-zero, the component will operate on rays found within it,
otherwise it operates on those that are outside. If transparent is non-zero, the component will pass
rays, otherwise it will block them. The optional argument 1abel may be used to specify the name of the
component.

ellipse(a, b, interior, transparent, [{label=name}])
Insert an ellipse lying in the = — y plane, centered at the origin of the local coordinate system. The ellipse
has the specified semi-major and semi-minor axes. If interior is non-zero, the component will operate
on rays found within it, otherwise it operates on those that are outside. If transparent is non-zero, the
component will pass rays, otherwise it will block them. The optional argument label may be used to
specify the name of the component.

el11(height, width, thickness, transparent, [{label=name}])
Insert an ‘L’ shaped component lying in the x — y plane, centered at the origin of the local coordinate
system. The ‘L’ has the specified height and width. The thickness refers to the width of the bars which
make up the legs. If transparent is non-zero, the component will pass rays, otherwise it will block them.
The optional argument label may be used to specify the name of the component.

pass()
Pass all rays. Use this as a diagnostic aid to ignore any components which follow the current component

in the current assembly.

polygon(vertices, interior, transparent, [{label=name}])
Insert a polygon lying in the x—y plane, centered at the origin of the local coordinate system. The polygon
is specified as a list of x,y coordinates of the vertices ordered in either a clockwise or counterclockwise
direction. Vertices must be specified as a Lua table, with each vertex a table with two elements, e.g. {X,
Y}. For example:

vertices = { {0,0}, {1,0}, {0.5,1} }
polygon(vertices, 1, 1)

If interior is non-zero, the component will operate on ray found within it, otherwise it operates on
those that are outside. If transparent is non-zero, the component will pass rays, otherwise it will block
them. The optional argument label may be used to specify the name of the component.

print_ray("xfrm" | "raw" | "raw_project" | "project" | "on" | "off")
Print the position and direction cosines of the ray (in that order, with the components in the order z, y,
z) to the standard error stream. The argument controls what information to print or whether to shut off
all printing:

"xfrm" print out the ray position and direction cosines after being transformed to
the current coordinate system

"raw" print out the ray position and direction cosines in the external coordinate
system

"raw_project" project the ray to the component and print its position and direction cosines
in the external coordinate system

"project" print out the ray position and direction cosines after having been trans-
formed to the current coordinate system and projected to the x — y plane.

"on" | "off" Turn on or off output from all calls to print_ray. It defaults to "on”.

Previously print_ray was called print_photon. This usage is deprecated.

rect(width, height, interior, transparent, [{label=name}])
Insert a rectangle lying in the = — y plane, centered at the origin of the local coordinate system. The
rectangle has the specified height and width. If interior is non-zero, the component will operate
on rays found within it, otherwise it operates on those that are outside. If transparent is non-zero,
the component will pass rays. The optional argument label may be used to specify the name of the
component.

strut(width, interior, transparent, [{label=name}])
Insert a strut lying in the —y plane, centered at the origin of the local coordinate system. The strut has
infinite height and the specified width. If interior is non-zero, the component will operate on rays found
within it, otherwise it operates on those that are outside. If transparent is non-zero, the component
will pass rays. The optional argument label may be used to specify the name of the component.

wedge(thetamin, thetamax, interior, transparent, [{label=name}l])
This module creates an angular slice starting at thetamin and ending at theta max, extending to infinity.
The angles are specified in radians, and must be specified in a counter-clockwise direction. If interior
is non-zero, the component will operate on rays found within it, otherwise it operates on those that are
outside. If transparent is non-zero, the component will pass rays. The optional argument label may
be used to specify the name of the component.

wedger (radius, thetamin, thetamax, interior, transparent, [{1abe1=name}])
This module creates an angular slice starting at thetamin and ending at theta max, extending to the
specified radius. The angles are specified in radians. The angles are specified in radians, and must
be specified in a counter-clockwise direction. If interior is non-zero, the component will operate on

B-2

rays found within it, otherwise it operates on those that are outside. If transparent is non-zero,
the component will pass rays. The optional argument label may be used to specify the name of the
component.

wedger2(radius_inner, radius_outer, theta min, thetamax, interior, transparent, [{label=name}])
This module creates an angular slice starting at thetamin and ending at theta max, extending form
the specified inner radius to the specified outer radius. The angles are specified in radians. The angles
are specified in radians, and must be specified in a counter-clockwise direction. If interior is non-zero,
the component will operate on rays found within it, otherwise it operates on those that are outside. If
transparent is non-zero, the component will pass rays. The optional argument label may be used to
specify the name of the component.

