
JMKMOD
Models and Software for the Ground Calibration of

AXAF
Version 7.0

Eugene Y. Tsiang
The Smithsonian Astrophysical Observatory

of the
Harvard-Smithsonian Center for Astrophysics

60 Garden Street
Cambridge
MA 02138

email: tsiang@cfa.harvard.edu

2

Contents
I Introduction 7

0.1 JMKMOD User's Guide : 9
0.2 JMKMOD Reference Guide : 9
0.3 JMKMOD Software Guide : 9
0.4 Acknowledgments and a Development History : : : : : : : : : : : : : 10

II JMKMOD User's Guide 11
1 JMKMOD 15

1.1 JMKMOD, an XSPEC model : 15
1.2 Using JMKMOD : 16
1.3 JMKMOD parameters : 17

1.3.1 FPC/SSD response function parameters : : : : : : : : : : : : 20
1.3.2 Channel-energy conversion ratio : : : : : : : : : : : : : : : : : 21
1.3.3 Shelf-tail parameters : 22
1.3.4 Continuum parameters : 22
1.3.5 Pulser parameters : 22
1.3.6 Pileup parameters : 23
1.3.7 Absolute value switch : 23
1.3.8 Number of channels parameter Nchan : : : : : : : : : : : : : : 24
1.3.9 Global norm Nglobal : 24

1.4 Source/Filter Table : 25
1.4.1 Kramers Source : 27
1.4.2 PTB/BESSY Source : 27
1.4.3 Line source : 28

III JMKMOD Reference Guide 29
2 Proportional Counters 31

2.1 Proportional Counter models : 31
2.2 Photoionization: the Binomial Distribution : : : : : : : : : : : : : : : 33

4 CONTENTS

2.3 Statistics of electron avalanche growth: the Negative Binomial (Polya)
Distribution for Avalanche Electrons : : : : : : : : : : : : : : : : : : 36

2.4 Combining Secondary Electron Distribution with Avalanche Distribu-
tion to give Distribution of Electrons Hitting Wire : : : : : : : : : : : 39

2.5 Charge-to-Voltage Conversion in the MCA : : : : : : : : : : : : : : : 40
2.6 Reduction of the General Response Function to the Prescott functions 43
2.7 FPC Operational Settings during Experiments : : : : : : : : : : : : : 44
2.8 Asymptotic formulae : 45

3 Solid-State Detectors 47
3.1 SSD mgf : 47
3.2 HyperJM: modi¯ed Hypermet tails and shelves : : : : : : : : : : : : : 48

4 Continuum Models 51
4.1 Continuum X-ray emission - Kramer model : : : : : : : : : : : : : : : 51
4.2 Radiation through a circular aperture at BESSY : : : : : : : : : : : : 54

5 Pileup and Deadtime 57
5.1 Pulser peak : 57
5.2 Deadtime : 57
5.3 Pileup and Inverse FFT : 57

6 Inversion of Moment Generating Functions 59
6.1 Inversion of the Moment Generating Function for the Count spectrum 59

7 Relative and absolute calibration goals 61
7.1 AXAF calibration goals : 61

8 Conclusions 65

IV JMKMOD Software Guide 67
9 Architecture 69

9.1 Software architecture : 69
10 Code 73

10.0.1 params.for : 73
10.0.2 SUBROUTINE beschb(x,gam1,gam2,gampl,gammi) : : : : : : 75
10.0.3 subroutine bessy°ux(damping) : : : : : : : : : : : : : : : : : : 76
10.0.4 real*4 function bessyhole(alpha) : : : : : : : : : : : : : : : : : 76
10.0.5 subroutine bessik(x,xnu,ri,rk,rip,rkp) : : : : : : : : : : : : : : 77
10.0.6 FUNCTION chebev(a,b,c,m,x) : : : : : : : : : : : : : : : : : 80
10.0.7 double complex function ctmmgf(slap,mgf) : : : : : : : : : : : 81

CONTENTS 5

10.0.8 Block Data initje : 82
10.0.9 subroutine invert(mgfarr, pdfarr) : : : : : : : : : : : : : : : : 85
10.0.10SUBROUTINE FOUR1(DATA,NN,ISIGN) : : : : : : : : : : : 86
10.0.11 subroutine jmkmod(ear, ne, param, worksp, photar) : : : : : : 88
10.0.12 subroutine jmkply(contpdf, mgfarr, : : : : : : : : : : : : : : : 91
10.0.13 subroutine ranpile(mgfarr) : 94
10.0.14 subroutine perpile(mgfarr, pulsarr) : : : : : : : : : : : : : : : 95
10.0.15 subroutine mgfmake(linemgf, contmgf, mgfarr) : : : : : : : : : 96
10.0.16double complex function jmmgf(slap) : : : : : : : : : : : : : : 99
10.0.17double complex function dgjmgf(slap) : : : : : : : : : : : : : : 99
10.0.18double complex function binmgf(slap) : : : : : : : : : : : : : : 100
10.0.19double complex function plymgf(slap) : : : : : : : : : : : : : : 100
10.0.20double complex function dgmgf(slap) : : : : : : : : : : : : : : 100
10.0.21double complex function sglmgf(slap, sesmgf) : : : : : : : : : 101
10.0.22double complex function sglshelf(slap, sesmgf) : : : : : : : : : 102
10.0.23double complex function brshft(slap) : : : : : : : : : : : : : : 104
10.0.24double complex function contply(slap) : : : : : : : : : : : : : 104
10.0.25double complex function contexp(slap) : : : : : : : : : : : : : 105
10.0.26double complex function contdg(slap) : : : : : : : : : : : : : : 105
10.0.27 subroutine newmac(kElem, extinct) : : : : : : : : : : : : : : : 106
10.0.28SUBROUTINE hunt(xx,n,x,jlo) : : : : : : : : : : : : : : : : : 108
10.0.29 subroutine mgftbl(stunt,mgfarr) : : : : : : : : : : : : : : : : : 110
10.0.30 subroutine mirror(damping) : : : : : : : : : : : : : : : : : : : 111
10.0.31SUBROUTINE qsimp(func,a,b,s) : : : : : : : : : : : : : : : : 113
10.0.32SUBROUTINE qtrap(func,a,b,s) : : : : : : : : : : : : : : : : 113
10.0.33 subroutine damper : 114
10.0.34 subroutine krasub(damping) : : : : : : : : : : : : : : : : : : : 115
10.0.35 subroutine linegauss(damping) : : : : : : : : : : : : : : : : : : 115
10.0.36 subroutine source(kElem, thick, damping) : : : : : : : : : : : 116
10.0.37SUBROUTINE trapzd(func,a,b,s,n) : : : : : : : : : : : : : : : 121

11 XSPEC 123

V Appendix 125
11.1 Appendix: Solution to a Di®erence-di®erential Equation : : : : : : : 127

11.1.1 Binomial distribution (b < 0) : : : : : : : : : : : : : : : : : : 130
11.1.2 Case 2. Poisson distribution (b = 0) : : : : : : : : : : : : : : : 130
11.1.3 Case 3. Negative binomial distribution (b > 0) : : : : : : : : : 130

VI References 133

6 CONTENTS

Part I
Introduction

7

JMKMOD User's Guide 9

This manual describes JMKMOD, a suite of models that may be used for:
1. Characterizing the °ow proportional counters (fpc's) and solid-state detectors

(ssd's) used in the ground calibration of the NASA Advanced X-ray Astrophys-
ical Facility (AXAF) at the X-ray Calibration Facility (XRCF, Marshall Space
Flight Center).

2. Extracting the detector line and continuum counts for absolute (using the
PTB/BESSY synchrotron white beam) and relative calibration of the detec-
tor quantum e±ciencies.

3. Extracting the High Resolution Mirror Assembly (HRMA) e®ective area.
This manual consists of three parts:

² JMKMOD User's Guide
² JMKMOD Reference Guide
² JMKMOD Software Guide

0.1 JMKMOD User's Guide
The JMKMOD User's Guide is for the data analyst who needs the knowledge to
use the JMKMOD model within XSPEC. It contains a table of the XSPEC param-
eters, and a table of the source/¯lter functions for the spectral continuum. A brief
description of the parameters are given.

0.2 JMKMOD Reference Guide
The JMKMOD Reference Guide forms the theoretical backbone. It is for the data
analyst who wants a knowledge of the physical meaning of the parameters she gets
from her XSPEC ¯ts. It gives the origins of the models and their parameters, with
some previously unpublished di®erence-di®erential equation solutions given in the
Appendix. The author feels that further model development should trace its roots
to the basic physics described here. It provides an example of how to develop a semi-
empirical model for any charge-multiplying detector, gaseous-electronic or otherwise,
starting from basic principles.

0.3 JMKMOD Software Guide
The JMKMOD Software Guide is for the programmer who wants to extend JMK-
MOD. It gives the software architecture and a listing of the Fortran code with com-
ments.

10

0.4 Acknowledgments and a Development History
The author would like to thank the HEASARC sta® in general and Keith An-
naud(GSFC) in particular for their roles in the development and support of XSPEC.
He would also like to thank Allyn Tennant(MSFC) for answering his numerious ques-
tions about XSPEC.

Edwin Kellogg(SAO) ¯rst brought the existence of XSPEC as a best-¯t mod-
eling package to the attention of the author around May, 1995. Not recognizing
the adaptability of XSPEC to handle the simultaneous ¯tting of source and detec-
tor model parameters, the author did not pursue the idea of using XSPEC until
July, 1995, when Jack Hughes(then SAO, now Rutgers) and Richard Edgar(SAO)
suggested the use of the diagonal matrix within XSPEC, as well as the Jahoda-
McCammon model for FPCs.

The author worked out a closed-form proportional counter model, and tested
the algorithm for implementing it on a PCMathematica platform in July, 1995. Sarah
Vitek(SAO) and the author took advantage of some previous IDL code left over from
the AXAF VETA experiment[13] that reads in the atomic absorption coe±cients
from the Henke Tables[22]. They tested the algorithm in routines written in the
IDL language[23] between August and September, 1995. Vitek then ported the IDL
code into Fortran(the base language of XSPEC) between September and November,
1995. They successfully tested the ¯rst JM-Kramers model on real data between
September and December, 1995. Vitek applied the basic JM-Kramers model to many
FPC spectra in early 1996.

Even before he knew about XSPEC and the Jahoda-McCammon model, the
author had worked out an algorithm of spectral pileup removal in early 1955, based on
a theory due to Tenney, which showed promise when used on Fe55 data accumulated
on SSDs at SAO. By happenstance, this method depended on the Fourier Transform
function of the count spectrum, which ¯t in most harmoniously with the moment
generating function approach he took with the JM model later.

Unlike the Kramers or Pella model of the electron impact point source (EIPS),
the absolute synchrotron `white-beam' spectrum can be calculated and measured to
a high rate of precision, and can be used for absolute calibration. In early 1996,
the author worked out the synchrotron radiation °ux through a circular aperture
placed on and above the cyclotron orbit plane, as part of a PTB/BESSY white
beam calibration study. He also gave a formal meaning to absolute calibration in the
parameter ¯tting context.

The author brought all these strands together in JMKMOD, a complete suite
of models for the relative and absolute calibration of °ow proportional counters and
solid-state detectors, between July and December 1996. The present version is Version
7.0.

Part II
JMKMOD User's Guide

11

13

We present a semi-empirical model suitable for the spectroscopic analysis of
proportional counters, which serves, by extension, for solid-state detectors as well.
These counters have been undergoing tests at SAO and MSFC for use in the ground
calibration of the NASA Advanced X-ray Astrophysical Facility (AXAF) X-ray mir-
rors (High Resolution Mirror Assembly, or HRMA). The motivation for developing
the model is the extraction of photon counts from line emissions to characterize the
AXAF mirrors. The model, based on the theories of Prescott, Alkhazov and Jahoda-
McCammon, has been incorporated into XSPEC, an X-ray spectral-¯tting program
widely used by the astrophysical community. The model can extract discrete line
strengths and the continuum from the count spectrum, as well as the parameters
characterizing the spectral response function. The novel features of this model are:

1. The considerable insight provided by the traceback of the parameters of the
model back to the underlying physics of ionization and recombination. Thus,
the Fano factor F is related to the ratio of the rates of ionization and recombina-
tion. The Polya h factor is expressed as the ratio of the actual gas amplication
factor to that predicted by Townsend's avalanche theory of electron multiplca-
tion. They both give rise, in general, to non-Poissonian gain variances.

2. The deduction of a closed-form expression for the moment generating function
(Laplace Transform) of the detector spectral response function. For calibration,
it is normally only possible, if not extremely advantageous, to use closed-form
expressions, as opposed to models based on extensive simulations or calcula-
tions, where each run is a brand-new mathematical problem based on some
assumed parameters.

3. The inversion of the the moment generating function to give the ¯nal spectral
response function by inverse Fast Fourier Transform. This is also the only
way of getting a convenient distribution based on the theories of Alkhazov and
Jahoda-McCammon distribution to extract the parameters of the detector.

4. The reduction of the general detector response function to the classic Prescott
function in the limit Fano factor F ! 1, Polya h factor ! 1.

14

Chapter 1
JMKMOD

1.1 JMKMOD, an XSPEC model
JMKMOD is the software for calibrating, using semi-empirical detector/source mod-
els, the ground-based AXAF X-ray detectors at several sites: the X-ray Calibration
Facility(XRCF) of the Marshall Space Flight Center (MSFC, Huntsville, AL), the
Smithsonian Astrophysical Observatory(SAO, Cambridge, MA) and the PTB(BESSY,
Berlin). JMKMOD includes the suite of models for analyzing the XRCF, SAO and
BESSY spectral data, with each individual XSPEC model within this suite being
denoted by hjmkmodi. Each hjmkmodi is a model with various numbers of incoming
spectral lines and source/¯lter components. The "o®-the-shelf" hjmkmodi models in
Version 7.0 (January 29, 1997) are given in the following table:

hjmkmodi lines ¯lters no. pars incl. global norm
jmkmod 2 6 59
jmkmod4 4 6 63
jmkmod8 8 6 71
jmkmod16 16 6 87

Global norm is the normalizing constant at the very end of each XSPEC model.
The basic model is jmkmod for 2 spectral lines, which is also the name of the Fortran
subroutine jmkmod.f incorporated into the XSPEC local functions subdirectory

$XANADU/local/spectral/xspec/src/functions
. Models for more lines and ¯lters all call jmkmod.f.

The number of lines and ¯lters can be changed by an authorized XSPEC
`superuser' by editing the ¯le lmodel.dat in the local model subdirectory

$XANADU/local/spectral/xspec/src/model
. The user may desire to do this if the number of lines and ¯lters are insu±cient, or
if she wants to make the program run more e±ciently by having a custom number
of lines and ¯lters. She would change the parameters num¯l and numcomp in the
parameter table. For example, jmkmod8 MUST have num¯lter = 6, numcomp = 8.
The actual parameters for the lines and ¯lters come after all the other parameters

16 JMKMOD

of JMKMOD. It will be apparent to the user what to modify by looking at the
o®-the-shelf examples in lmodel.dat.

JMKMOD is a suite of models of the output count spectrum in the de-
tectors. The output count spectrum is the detector response function (Jahoda-
McCammon, or JM model, and its various extensions) that has been convolved with
line and continuum source spectrum, with counting artifacts such as pileup added.
It is intended for use with a unit diagonal response matrix within XSPEC. Its
usage di®ers from the usual mode of XSPEC in the following way. In the usual mode,
the user numerically convolves the input model spectrum and the detector response
function to give an output count spectrum which is compared to the observed spec-
trum, and the parameters are adjusted to give a "best" ¯t. For detector calibration
work, this detector response itself is not known, and indeed is part of the goal of the
calibration itself. Therefore, we include the response matrix (JM model, gaussian,
etc.) in the model of the incoming spectrum. We de¯ne the XSPEC response matrix,
i.e. the one invoked by the XSPEC command

XSPEC> response [hdiagresponsei : : :] (1.1)
to be a unit square diagonal matrix ¯le hdiagresponsei, which being a unit matrix,
does nothing to the output count spectrum. The hdiagresponsei used most often are
diag512.rmf and diag4096.rmf for proportional counters and solid-state detectors
respectively.

1.2 Using JMKMOD
To analyze a single spectrum, ¯rst convert the .pha ¯les of interest into .¯ts ¯les,
using a PERL script such as pha2¯ts[37]. Invoke XSPEC with the command

> xspec data h¯lenamei (1.2)
or read in the observed count spectrum within XSPEC with the command:

XSPEC> data h¯lenamei (1.3)
where h¯lenamei is the FITS data ¯le. Bring in the response with

XSPEC> response hdiagresponsei (1.4)
Two commonly used hdiagresponseis are diag512.rmf and diag4096.rmf for use
with data containing 512 (°ow proportional counters) and 4096 channels (solid-state
detectors) respectively. Make sure these are in your directory or search path. Invoke
JMKMOD. For a 4-line spectrum, type

XSPEC> model jmkmod 4 (1.5)

JMKMOD parameters 17

As a rule, invoke JMKMOD as a standalone model only|the additive and
multiplicative aspects of XSPEC should not be used in conjunction with
JMKMOD. This is because the electronic pileup e®ects (if the pileup switch is
turned on or set to a nonzero number) mixes the di®erent spectral components of
JMKMOD with each other, so that various components are no longer distinct. Thus
with pileup included, the invocation of a 4-line model with (1.5) is correct, while

XSPEC> model jmkmod + jmkmod (1.6)
would be wrong. Of course, if pileup is not included, (1.5) is permissible.

Following invocation of JMKMOD, XSPEC responds with a query for param-
eter values, described in the following section.

1.3 JMKMOD parameters
The number of parameters for V.7.0 stands at 59 for 2 lines and 6 ¯lters, including
switches. Some typical values are shown in the following table. Not all the parameters
are active at any one ¯tting. For example, if `sestype 2' (which stands for single
electron spectral type 2) is chosen (usually for ssd spectra), then "polyah" is ignored,
because sestype 2 corresponds to an SES that is a delta function (h!1). As
another example, the gas temperature and pressure have no meaning for SSDs. It is
important for the user to freeze these inactive parameters. At best, XSPEC
will waste time calculating unnecessary elements in the sensitivity matrix.

A word about the counts: the ¯nal count rates are the products of the global
normalization Nglobal(last parameter 59) and the individual line or continuum compo-
nents. One tactic is to get a reasonably good ¯t with parameter 59 free and either the
line or continuum component ¯xed at 1. The ¯nal ¯t is then done with Nglobal ¯xed
at 1, and letting the line and continuum norms go free, after setting their best guesses
equal to the products of the old line and continuum norms with the old Nglobal. The
disadvantage of freezing Nglobal is that the renormalization command

XSPEC>ren
loses its e®ect.

The parameter table for jmkmod (2 lines, 6 ¯lters) with some typical SSD
values is as follows.

Table 1.1: JMKMOD parameter table
No. parameter value par comp comments
1 fano F 0.166682 +/- 0. Fano factor (JM

model)
2 polyah h 1.20000 frozen Polya h factor (JM

model)

18 JMKMOD

Table 1.1: JMKMOD parameter table (cont .)
No. parameter value par comp comments
3 E o®set E0 0. frozen O®set energy

(keV, JM model)
4 i pot w 3.000000E-03 frozen pair creation en-

ergy (keV, JM)
5 gain ¹ 0.428890 +/- 0. (channels per pair,

JM)
6 ch o® qo 73.1796 +/- 0. zero o®set

(channels)
7 broad ¾ch 20.6944 +/- 0. sigma (channels)
8 d gain ¢¹ 0. frozen gain variation

(channels)
9 nchan Nch 4096.00 frozen no. actual chan-

nels (512/4096)
10 sestype 2.00000 frozen switch: 1 (JM),

2 (ssd), 3 (broad
JM)

11 contin 1.00000 frozen switch, n.e. 0 for
continuum

12 econt Ec 13.2840 +/- 0. continuum energy
(keV): upper cuto®
of bremsstrahlung,
or critical energy of
synchrotron

13 contnorm Ncont=Nglobal 9.035257E-02 +/- 0. continuum
norm(dimensionless)

14 E max Emax 13.2840 = par 12 convolution upper
limit (keV)

15 E min Emin 1.000000E-02 frozen convolution lower
limit (keV)

16 E char Echar 2.00000 frozen characteristic line
energy (keV) with
natural width

17 E width Ewidth 0.100000 frozen natural width of
line (keV)

18 nInt Nint 512.000 frozen no. convolution
points

19 temper T 15.0000 frozen temperature of fpc
(deg. C)

20 pressure P 400.000 frozen pressure of fpc
(Torr)

21 argrat 0.900000 frozen argon ratio for P10

JMKMOD parameters 19

Table 1.1: JMKMOD parameter table (cont .)
No. parameter value par comp comments
22 shelfsw 1.00000 frozen switch, n.e. 0 for

shelf
23 t1norm ¯tail 0. frozen descending

tail norm
(dimensionless)

24 t1par x1 0.999000 frozen descending tail
parameter

25 t2norm °tail 0. frozen ascending
tail norm
(dimensionless)

26 t2par x2 1.00100 frozen asending tail
parameter

27 shelfnm ±shelf 5.894007E-02 +/- 0. °at shelf norm
(dimensionless)

28 pulser 0. frozen switch, n.e. 0 for
pulser

29 pulsepos qpulser 100.000 frozen pulser
position(channels)

30 pulsesig ¾pulser 1.00000 frozen pulser sigma
(channels)

31 pulsenrm Npulser=Nglobal 1.00000 frozen pulser norm
(dimensiless)

32 numcomp 2.00000 frozen number of line
components

33 num¯l 5.00000 frozen number of
source/¯lters

34 pileup 1.00000 frozen switch, 1 for peri-
odic pulser, 0 no
pulser, -1 random
pulser

35 pilepar exp(¡Ntrue¿pu) 1.00000 +/- 0. pileup parameter
(dimensionless)

36 b¯eld Bsynch 14500.0 frozen magnetic induc-
tion (gauss)

37 current Isynch 1.00000 frozen current (mA)
38 incline ®synch 0. frozen inclination of aper-

ture from orbital
plane (radians)

39 abswitch 0. frozen absolute calibra-
tion switch

40 phi ÁHRMA 0. frozen HRMA pitch angle
in degrees

20 JMKMOD

Table 1.1: JMKMOD parameter table (cont .)
No. parameter value par comp comments
41 theta µHRMA 0. frozen HRMA yaw angle

in minutes
42 combo 0. frozen HRMA mirror

combination
43 E line1 E°1 1.49000 frozen line 1 energy (keV)
44 E line2 E°2 1.49000 = par 39 line 2 energy (keV)
45 E norm1 N°1=Nglobal 1.00000 frozen line 1 norm

(dimensionless)
46 E norm2 N°2=Nglobal 0. frozen line2 norm

(dimensionless)
47 src1 35.0000 frozen source/¯lter 1
48 src2 2.00000 frozen source/¯lter 2
49 src3 5.00000 frozen source/¯lter 3
50 src4 2.00000 frozen source/¯lter 4
51 src5 37.0000 frozen source/¯lter 5
52 src6 42.0000 frozen source/¯lter 6
53 srcthk1 0. frozen source/¯lter 1

parameter
54 srcthk2 1.185682E-03 +/- 0. source/¯lter 2

parameter
55 srcthk3 1.200000E-04 frozen source/¯lter 3

parameter
56 srcthk4 2.000000E-05 frozen source/¯lter 4

parameter
57 srcthk5 0.500000 frozen source/¯lter 5

parameter
58 srcthk6 0.500000 frozen source/¯lter 6

parameter
59 global norm Nglobal 2413.54 +/- 0. scaling norm (Hz)

A brief explanation of the various parameters follows. Instead of working with
probability distribution functions (pdf's), we work with their moment generating
functions (mgf's). This mgf-based approach, the physics of the model and detailed
derivations are given in the JMKMOD Reference Guide and the Appendix. Where
appropriate, the symbols in the parameter table are the same as those used in the
Guide.
1.3.1 FPC/SSD response function parameters
The basic detector response function is given by its moment generating function
(mgf)©a(s), where s is the Laplace Transform parameter conjugate to the channel
number:

JMKMOD parameters 21

Fano response function mgf ©a(s;E°)
F 6= 1 Ra(s)(1¡ (1 ¡ F)(1¡Ra(s))) hnsei1¡F

F = 1 Ra(s)exp (¡hnsei (1¡Ra(s)))
in which the mgfs Ra(s) for single electron specta (SES) of di®erent types are:
type / SES description mgf Ra(s)
1 (FPC/SSD) `Polya' or Erlangian h1 + ¹

hs
i¡h

2 (SSD) Delta function limh!1
h1 + ¹

hs
i¡h ! exp (¡¹s)

3 (FPC) Broadened gain (°at) ln(1+(¹+¢¹)s
1+(¹¡¢¹)s)
2s¢¹ , h = 1

R ¹+¢¹
¹¡¢¹

h1 + ¹0
h s
i¡h d¹0 [1+ (¹¡¢¹)

h s]1¡h¡[1+ (¹+¢¹)
h s]1¡h

2s¢¹(1¡ 1
h) , h 6= 1

One can imagine adding more SES types to this list, such as one where the
the probability distribution of the gain is a known function across an FPC wire.

As shown in the Reference Guide, the special case of h = 1 and F = 1
corresponds to the mgf of the Prescott pdf. The mean number of secondary pairs
(electron-ion or electron-hole) created are

hnsei = E° ¡ E0
hwi

where hwi is the average energy in keV to produce a pair (28eV for electron-ions and
3eV for electron-holes), E° is the energy of the incoming X-ray in keV , E0 is the
o®set energy in keV .

In addition, electronic broadening due to preampli¯er noise in the detector
electronics contribute a shift and a broadening in channels of qch and ¾ch respectively,
giving for the detector mgf

©a(s;E°) !electronic broadening exp
Ã
¡qchs+ ¾2chs2

2
!
©a(s;E°)

The electronic broadening is the dominant source of response function broadening for
SSDs, but there is a small Fano component as well.
1.3.2 Channel-energy conversion ratio
The ratio ¹

w (1.7)
(channels per keV) gives the conversion from energy to channels. The reciprocal gives
the conversion from channels to energy:

w
¹ (1.8)

22 JMKMOD

1.3.3 Shelf-tail parameters
Fano/mgf tail ©tail (s) shelf ©shelf (s)
F 6= 1 yhnseixnmax¡1(yhnsei¡1)[1+ lnx

(1¡F) ln y]
(1¡F)(1¡xnmax)

¡hnsei ln x
F = 1 ¡1+yhnsei exp[hnsei(Ra(s)¡1)](yhnsei¡1)[1+Ra(s)¡1

ln y]
exp[hnsei(Ra(s)¡1)]¡1

(Ra(s)¡1)hnsei
where

x ´ F + (1 ¡ F)Ra (s) (1.9)
y = tail parameter
Ra (s) = SES

These mgfs are all unit normalization. Two mgfs for tails and a shelf mgf are
added to the basic single line mgf ©a (s) to give the line mgf

©line(s) = ©a(s) + ¯tail©tail (s; tl+) + °tail©tail (s; 0) + ±shelf©tail (s; tl¡)
1 + ¯tail + °tail + ±shelf (1.10)

1.3.4 Continuum parameters
When the continuum switch is non-zero, then a continuum spectrum Nc (E°)as modi-
¯ed by the detector quantum e±ciency ´ (E°)and any transmission ¯lters exp [¡¹source (E°) tsource],
is included as part of the ¯t. The continuum mgf is

©cont(s) =
Z Emax

Emin
©a(s;E°) ¢ ´ (E°) ¢ exp [¡¹filter (E°) tfilter] ¢Nc (E°) dE°

where ©a(s;E°) is the selected response function mgf above for incoming X-ray energy
E°. This convolution integral is numerically evaluated from some minimum energy
(typically 10eV or some lower energy cuto® where the transmission or q.e. becomes
negligible) to some maximum energy Emax. The number of uniformly spaced nu-
merical integration points chosen is Nint, which is practically chosen to be 512, but
may be set to a maximum of 1024 (for Version 7.0). More points may be added if
needed by changing the program. The user may experiment with this parameter to
see if there is a di®erence in how closely she choses his integration points. For a list
of the continuum sources and ¯lters available, see the Source/Filter Table below.
1.3.5 Pulser parameters
To ¯t the pulser set the pulser switch to a non-zero number. At the moment the
pulser mgf is assumed to be gaussian:

©pulser(s) = exp
Ã
¡qpulsers+ ¾2pulsers2

2
!

where qpulser and ¾pulser are the pulser location and broadening in channels respec-
tively. More general pro¯les such as the Voight pro¯le may be added later as the
actual pulser pro¯le is often not gaussian, or the user may choose not to ¯t the pulser
channels, since doing so is inherently inaccurate.

JMKMOD parameters 23

1.3.6 Pileup parameters
To turn pileup on set the pileup switch to a non-zero number. Let the combined mgf
from the lines E°, continuum and pulser be

©total (s) =
Npulser©pulser(s) +Ncont©cont(s) +P

° N°©a(s;E°)
Ntotal

(1.11)
where Npulser, Ncont and N° are the pulser, continuum and line norms(count rates),
and

Ntotal = Npulser +Ncont +X
°
N° (1.12)

is the total incoming count rate. Then the ¯nal mgf ©pileup(s) after pileup is
type of pulser ©pileup(s)
1 or periodic ©total(s) e¡Ntotal ¿pu

1¡(1¡e¡Ntotal ¿pu)©total(s)
2 or random ©total(s) e¡Ntotal ¿pu

1¡(1¡e¡Ntotal¿)©part(s)
where

©part(s) =
Ncont©cont(s) +P

°
N°©a(s;E°)

Ncont +P
° N°

The combination
pilepar = e¡Ntotal ¿pu (1.13)

is the pileup parameter in the ¯t, where ¿pu is the residual counter pileup time, which
is typically about 10% of the countrate deadtime. Strictly speaking Ntotal should
be Ntrue, the true count rate when corrected for deadtime. The pileup parameter is
always less one.
1.3.7 Absolute value switch
Note that all the mgfs have unit norms, with one exception. When the absolute
value switch, `abswitch' is set to a non-zero number, absolute calibration is in e®ect
for synchrotron white-beam (or any continuum) data. The mgf for the continuum
©cont (s) is then not normalized to unity, but to the actual count rate predicted by
theory. The user should

1. Freeze the continuum normalization `cont norm' at 1.
2. Let the global norm Nglobal go free (the default anyway).
3. Let XSPEC do the ¯t and compare the ¯tted value of Nglobal with unity. If the

theory of the source (synchrotron radiation model) is correct, if all the ¯lter
thicknesses are correctly ¯tted or measured, and if a model of the detector

24 JMKMOD

quantum e±ciency (relative q.e. model) is correct, the Nglobal should be close
to unity, and the error bounds on Nglobal should provide a metric of the overall
absolute calibration accuracy.

1.3.8 Number of channels parameter Nchan
The count rate spectrum r (n) in channel n is obtained by numerically inverting
©pileup(s)

r(n) = 1
N±q

N¡1X
k=0

©pileup (s)
Ã
j 2¼kN±q

!
ej 2¼knN ; n = 0; 1; : : : ; N ¡ 1

= 0 otherwise
As shown in the Reference Guide, we exploit the fact that r(n) is real to cut down on
the number of complex arithmetical operations to half the number of computational
channels N . We have chosen

N = 2Nchan

The parameter Nchan itself, which is a frozen parameter, can be chosen to be a power
of 2 which is equal to or greater than the number of physical channels Nphys,
which is 4096 for SSD spectra and 512 for FPC spectra. Channels in excess of the
number of Nphys are simply not plotted in XSPEC's graphical commands plot and
iplot. Note that it is not necessary to set Nchan = Nphys, but it may be necessary to
choose a large enough Nchan when there are continuum or pileup counts at very high
channel numbers beyond what are actually counted in within Nphys:
1.3.9 Global norm Nglobal
When we perform an XSPEC ¯t we are actually ¯tting the inverse transform (inverse
Fourier Transform for s imaginary) of:

Npulser©pulser(s) +Ncont©cont(s) +P
°
N°©a(s;E°)

Nglobal

=
ÃNpulser
Nglobal

!
©pulser(s) +

Ã Ncont
Nglobal

!
©cont(s) +X

°

Ã N°
Nglobal

!
©a(s;E°)

= (pulser norm)£©pulser(s) + (cont norm)£ ©cont(s) +X
°
(line norm)° £ ©a(s;E°)(1.14)

to the data. The last XSPEC ¯t parameter is the global norm parameter Nglobal: The
actual number of counts for each of the components is therefore

Npulser = Nglobal £
ÃNpulser
Nglobal

!
= Nglobal £ pulser norm

Source/Filter Table 25

Ncont = Nglobal £
Ã Ncont
Nglobal

!
= Nglobal £ cont norm

N° = Nglobal £
Ã N°
Nglobal

!
= Nglobal £ line norm° (1.15)

Usually we freeze (line norm)° for one of the lines (a prominent line which takes centerstage, say) at unity, then the global norm Nglobal is just N° for that line. Sometimes, it
is more natural to freeze the continuum norm at unity, as when we are doing absolute
calibration using synchrotron radiation using abswitch 6= 0.

1.4 Source/Filter Table
The source/¯lter types and associated parameters must be speci¯ed for the contin-
uum. Sources and ¯lters are treated the same. Imagine the source to be a white
spectrum that passes through a number of ¯lters, which are listed in the following
table. The parameter associated with the ¯lter is usually the thickness of the ma-
terial in centimeters, except where noted. An exception is the synchrotron model,
where the ¯lter parameter is the sine of the half-angle of the aperture subtended at
the tangent to the orbit. It may seem strange that a source should be treated like
a ¯lter, till one realizes that the source spectrum is the same as the spectrum pro-
duced by white light that has gone through a source `¯lter'. The various parts of the
detector that make up the detectors quantum e±ciency are also treated as ¯lters.

The source/¯lter table is as follows:

Table 1.2: JMKMOD source/¯lter table
¯lter name symbol par (usually cm)
1 molybdenum mo Mo 2.d-4
2 aluminum al Al 1.d-4, 2.d-6 on fpc
3 zirconium zr Zr 2.d-4
4 copper cu Cu 0.5d-4
5 parylene p1
6 carbon c C 2.5d-4
7 beryllium be Be 2.d-4
8 boron b B 1.d-4
9 chromium cr Cr 1.d-4
10 iron fe Fe 0.6d-4
11 nickel ni Ni 0.5d-4
12 zinc zn Zn 2.5d-4
13 magnesium mg Mg 1.5d-3
14 titanium ti Ti 4.d-4

26 JMKMOD

Table 1.2: JMKMOD source/¯lter table (cont .)
¯lter name symbol par (usually cm)
15 silver ag Ag 1.d-4
16 indium in In 5.d-4
17 vanadium v V 2.d-3
18 cobalt co Co 2.5d-3
19 polyimide p2 1.065d-4
20 oxygen o O NA
21 hydrogen h H NA
22 nitrogen n N NA
23 argon ar Ar NA
24 xenon xe Xe NA
25 tin sn Sn 1.d-4
26 niobium nb Nb 1.d-4
27 tungsten w W 1.d-4
28 mylar pe not implemented
29 te°on p4 not implemented
30 ammonium dihydrogen phosphate pn p5 not implemented
31 pvc p6 not implemented
32 germanium ge Ge 1.d-4
33 sillicon si Si 1.d-4
34 °uorine f F NA
35 Kramers model ks NA
36 synchrotron model sy sin (half-aperture)
37 germanium detector q.e. gx 1.d-1
38 fpc p10 q.e. ax 5.36
39 fpc methane q.e. mx 5.36
40 HRMA e®ective area ea meaninc switch
41 gaussian line gn NA
42 pella continuum px to be implemented
43 gold au Au 1.d-4
44 iridium ir Ir 1.d-4
45 unity(all-pass) un NA
46 manganese mn Mn 1.d-4
47 polypropylene p7 1.d-4
48 ice ic 1.d-4

The absorption or transmission coe±cients are calculated by looking up the
Henke Tables for the components of the ¯lters, where needed.

Filter 45, the unity or all-pass ¯lter, is very useful as a `¯ller' ¯lter. When
there are only four ¯lters being used out of six, the remaining two may be set to 45.

The thicknesses of the ¯lters are an important part of the ¯t, espe-
cially for absolute calibration.

Source/Filter Table 27

1.4.1 Kramers Source
For the electron impact point source (EIPS), Kramers's bremstrahllung spectrum is:

Nc (E°) dE° = kZ (E ¡E°) dE°
E°

with
k = 8¼e2

3p34¼"0hc5ml
where the constants have their usual physics textbook meanins. Only the

dependence (E¡E°)
E° is useful. The constant kZ multiplying into it is not used at all,

and indeed is discarded when the spectrum is normalized to one (when abswitch = 0).
Absorption e®ects of X-rays within the source, not included in Kramers' model, in
included in Pella's model, but are not implemented in Version 7.0.
1.4.2 PTB/BESSY Source
When the detector lies in the orbital plane of the cyclotron orbit(®synch = 0), the
count rate within a dimensionless spectral range dy through an aperture whose half-
angle is ¢ is

Naperture (y; ®synch = 0)
Nsynch

dy = 3p3y
20¼3 ¢ 4 ¢
Z ° sin¢
0

Z 2¼
0

½³1 + p2y
´2K22=3 (») +

³1 + p2y
´ p2yK1=3 (»)

¾
¢

arctan
Ã°2 sin2¢¡ p2

° cos¢
!
dpydy

where
» = y

2
³1 + p2y

´3=2

y = Ex
Es

the ratio of the X-ray energy Ex(frequency ºx)to the critical energy Es(critical fre-
quency ºs)

Es = hºs

ºs = 3
2 ¢

µEsynch
mec2

¶2
¢ eBsynch

mec ¢ 1
2¼

28 JMKMOD

Esynch being the electron energy, Bsynch being the magnetic induction, and the other
symbols having their conventional meanings. The variable Ã is

Nsynch = 10¼2Isynchp3e ¢ Esynch
mec2 ¢ e

2

hc
for a current Isynch. Other symbols retain their usual physics textbook meanings.

The following is not implemented in JMKMOD Version 7.0:
1. The °ux Naperture (y; ®synch)when ®synch 6= 0.
2. Finite source emittance.

1.4.3 Line source
This `continuum' source is useful when the natural width of the line straddles a
prominent feature in the ¯lter, such as an absorption edge. The line pdf is a shifted
gaussian:

1p2¼¾line exp
Ã¡ (E° ¡Eline)

2¾2line
!

Part III
JMKMOD Reference Guide

29

Chapter 2
PROPORTIONAL COUNTERS

2.1 Proportional Counter models
The operation of a proportional counter is well-known and described qualitatively and
semi-quantitavely in many places (Blum and Rolandi[7], Fraser[16], Kleinknecht[27],
Knoll[29], Fraser[16], Ku and Novick[32]). We use a model of the FPC response func-
tion which is based on the work of a long line of workers beginning with Prescott[38],
Alkhazov[1], and leading up to Jahoda and McCammon[26]. In these works, the
underlying probability distribution functions (Poisson, binomial, Polya pdfs, etc.)
are often assumed and then used to build up a composite distribution for the pulse
height spectra. Quantities such as the Fano factor and Polya h factor are introduced
ad hoc without much physical basis, except as ¯tting parameters. All these pdfs
come from the solutions to a model that treat the detector as a medium in which
particles are created through ionization and lost through recombination. In many
other disciplines, such as cosmic ray physics or queuing theory, these are known as a
birth-and-death processes. In the simple birth-and-death process which we consider
here, the birth(ionization) rates and death(recombination) rates are assumed to be
constants or linear functions of the particles already present. In the so-called drift
region far from the anode wire, we ¯nd that the solution is the binomial distribution,
with the Fano factor being directly related to the ratio of the death rate to the birth
rate. The bigger the Fano factor, the bigger the variance of the distribution. In
the avalanche region where the electric ¯eld is high, far from the drift region where
the ¯eld is low, we ¯nd that the appropriate distribution is the negative binomial or
Polya distribution, with the Polya h factor being the ratio of the actual gain to the
gain calculated by classical Townsend discharge theory. This physical interpretation
of the Fano factor F and the Polya h factor seems to be new and gives a good deal
of insight into the model. The birth-and-death model may therefore taken as funda-
mental which provides a framework for further modi¯cations and improvements, to
account for spatial inhomogeneities, geometrical e®ects, incomplete charge collection
through electron loss, etc. Birth-and-death calculations gives us not the probability
distribution functions(pdfs) themselves, but the moment generating functions (mgfs
or Laplace Transforms) of the pdfs. These cannot be inverted analytically, but can be
inverse Fourier transformed into the desired pdfs using the Fast Fourier Transform.
The pdfs constitute the JMKMOD detector models.

32 Proportional Counters

A proportional counter is a gas-¯lled chamber with a high positive voltage on
an anode wire running through it. An X-ray enters the counter through a window,
ionizes a gas atom and produces an immediate primary photoelectron. This ¯rst
photoelectron has an energy equal to the photon's energy minus an o®set. This pri-
mary photoelectron then ionizes several other atoms, producing a cloud of secondary
electrons. Some of these secondary electrons can be lost via electron di®usion. The
primary photoelectron is also accompanied by a cascade of Auger electrons and/or
°uorescent photons. Typically these photo- and Auger mean free paths are short (0.1
- 1 mm) in common counting gases at atmospheric pressure. Fluorescent yields for
K- and L-shell escape peaks are small and may be treated as a second order e®ect.
The average number of secondary electrons produced by the primary photoelectron
is proportional to the photon's original energy. After the cloud of secondary electrons
are created, they drift towards the high-¯eld anode wire region.

When each electron gets within a critical radius of the anode wire, the kinetic
energy gained from the accelerating voltage produces a second ionization process:
the so-called Townsend discharge. Each secondary electron from the intial ionization
produces a barrage of about 104 electrons (called avalanche electrons), which appears
as a voltage pulse in the measuring electronics. The pulse height distribution of this
pulse which is launched by a single secondary electron is called the single electron
spectrum (SES)[38]. Since there are many secondary electrons, the mean magnitude
of the signal, obtained by summing over all the individual pulses, is proportional
to the energy of the incident photon. Because of the statistical uncertainties in the
ionization and discharge process, there is a good deal of spread about the mean
magnitude of the signal. The probability distribution function (pdf) of this spread is
known as the detector's pulse height response function.

For detector modeling, we must translate the qualitative picture above into a
quantitative one. This quanti¯cation has been attempted by many authors. Prescott[38]
proposed a response function for a scintillator counter, then suggested that the model
of a proportional counter should be similar to it. He used a simple exponential distri-
bution for the SES from the photomultiplier surface, but he mentioned the possible
use of a Polya distribution for the SES, and the possibility of non-Poissonian statistics
in the initial ionization. Alkhazov[1] proposed a pdf which uses a Polya distribution
weighted by a binomial distribution, but did not give an analytical expression for its
moment generating function (mgf), which we have found to be so crucial for data ¯t-
ting. Jahoda and McCammon[26] adopted Alkhazov's suggestion of using the Polya
distribution for the SES, but computed a pdf which consists of Polya distributions
weighted by gaussians whose variances are characterized by a Fano factor. Jahoda
and McCammon also suggested another modi¯cation: replacing the weighting gaus-
sians by modi¯ed gaussians which takes into account electron di®usion losses. Their
method of calculating a detector response function from known parameters is com-
putationally very intensive, and is not useful as a ¯tting function when the detector
parameters themselves are unknown. Moreover, their accounting of secondary elec-

Photoionization: the Binomial Distribution 33

tron losses through electron di®usion, using Inoue's model,[25] awaits further study.
We derive a simple model for the proportional counter response function based

on a Polya (also known as a negative binomial) distribution weighted by a binomial
distribution. We show that both the binomial distribution for the secondary electrons
and the negative binomial distribution distribution for the avalanche electrons come
from a basic birth-and-death stochastic model for electron creation (birth) through
ionization, and loss(death) through recombination. The FPC response function so
obtained is then used in various ways to ¯t some measured spectra, which may include
discrete lines and bremsstrahlung continuum from an electron impact point source.

2.2 Photoionization: the Binomial Distribution
In this section, we derive the distribution of the secondary electrons created by a
primary photoelectron | the binomial distribution, from the ionization and recom-
bination process described by a di®erence-di®erential equation commonly used in the
theory of cosmic rays. The deduction of the Fano factor in terms of the ratio of
the recombination to ionization rates (Eq. (2.11) below) as a consequence of this
formulation is new.

As described above, the basic model of the proportional counter is that of a
photoionization process in the body of the gas followed by an electron multiplication
process in the high ¯eld region close to the anode wire. Let E° be the energy of
the incident photon, and let E0 be the work function or energy lost in the process
of converting the photon energy into a photoelectron. We assume here there are no
losses due to di®usion, which cause incomplete charge collection e®ects, L-shell photon
escapes, and Auger electron losses. This fundamental photoelectron is created with
a probability given by a so-called quantum e±ciency ´e. Let hwi be the average
photoelectron energy required to produce an ion-electron pair along the entire track
length of the ionizing particle. Values of w measured with photons and electrons are
experimentally found to be the same[7]. Then the average number hni of secondary
electrons produced is given by

hnsei = E° ¡ E0
hwi (2.1)

not counting the fundamental photoelectron. Values for E0 range from 0 to 100 eV ,
and have in general di®erent values between absorption edges the gas. [6]. Values for
w range experimentally from 20 to 30 eV in counter gases[6]. The following table for
w is taken out of a compilation by Christophorou[14]:

Table 1. Average energy w spent for the creation of one ion-electron pair in
various gases and a mixture; w® and w¯ are from measurements using alpha-particles
and electrons(or photons), respectively. The lowest(¯rst) ionization potential I is
typically 1.5 to 3 times smaller. From Christophorou[14].

34 Proportional Counters

Gas hw®i (eV) hw¯i (eV) I (eV)
Ar 26.4 26.3 15.76
CH4 29.1 27.1 12.99
Ar(97%)+CH4 (3%)y 26.0 » »
Air 35.0 33.8 12.15
H2O 30.5 29.9 12.60

yThe quoted concentration is the one giving the smallest w.
We normally use 28 eV for FPCs (and 3 eV for SSDs).
Let the maximum number nmax of secondary electrons created (the number is

¯nite since E° is ¯nite) be related to hni by

nmax ´ hnsei
(1¡ F) =

E° ¡ E0
hwi (1 ¡ F) (2.2)

where F will be identi¯ed with the Fano factor and has values less than 1. The com-
bination hwi (1¡ F) may be taken to be the value of the smallest electron creation
energy, hwi being the average. The following table is taken from Hendricks[21] show-
ing the °uctuations of the average potential required to produce one electron, albeit
in the high-¯eld avalanche region(see discussion on gas gain below).

Table 2. Measured values of w for various gases (from Hendricks[21]), showing
°uctuations in w in the high ¯eld region. The ratio of the °uctuation in w to w itself
may be taken to be an e®ective Fano factor.

Gas hwi § hwiF (eV) F
Ar(90%) + CH4 (10%) 23.6§5:4 0.23
Ar(95%) + CH4 (5%) 21.8§4:4 0.20
CH4 36:5§ 5:0 0.14

Let x be the distance traversed by the primary photoelectron in this weak ¯eld
region (sometimes known as the `drift' region), creating secondary electrons while on
its way. Let pn(x) be the probability of n secondary electrons generated by the
primary photoelectron as a function of the distance x traversed by the photoelectron.
We assume that

1. The probability of another secondary electron being created (birth) via ion-
ization in a small distance ¢x, when there are already n secondary electrons
present, is proportional to ¢x and to the number of secondary electrons nmax¡n
still capable of being created, ¸(nmax¡n)

nmax ¢x, where ¸, the e®ective ionization rate
is assumed to be a constant and n · nmax:

2. Each electron has the probability ¹¢x of `dying' via recombination during the
same interval ¢x, where ¹, the e®ective recombination rate is assumed to be a
constant.

Photoionization: the Binomial Distribution 35

Let pn(x) be the probability of there being n secondary electrons generated by
the initial photoelectron. Let x be the path length traversed by this photoelectron
as it goes about creating more and more secondaries, whose own path lengths are
parameterized by the same variable x. The di®erence-di®erential equations describing
this birth-and-death process for pnse(x) is

p0nse (x) = ¡
Ã¸(nmax ¡ nse)

nmax
+ nse¹

!
pnse(x) + (nse + 1)¹pnse+1(x) +

¸ [nmax ¡ (nse ¡ 1)]
nmax

pnse¡1(x) (2.3)
for 0 · nse · nmax;

= 0; otherwise
and

p00 (x) = ¡¸p0(x) + ¹p1(x) (2.4)
The initial condition is that there are no secondary electrons(the initial pho-

toelectron doesn't count since pn(x) is the pdf for secondaries created by it),
p0 (0) = 1 (2.5)

We show in the Appendix that this set of equations has the solution

pnse(x) = nmax!
nse! (nmax ¡ nse)F (x)nmax¡nse [1 ¡ F (x)]nse (2.6)

with mean

hnse (x)i = nmax¸(1¡ e¡ (¸+¹nmax)
nmax x)

¸ + ¹nmax
= nmax [1 ¡ F (x)] (2.7)

This has the steady state limit as x!1 of

hnsei = nmax¸
¸ + ¹nmax

= nmax [1 ¡ F] (2.8)
and variance

D¢n2se
E = hnseiF (2.9)

where F ´ F (1) : This shows the signi¯cance of the Fano factor F | it is the
fraction of the variance relative to Poisson variance. Using this relationship, Fano
calculated F directly for hydrogen[15]. It is also signi¯cant that F physically relates
the `death' rate ¹ to the birth rate ¸, which we get by solving for F from Eqs. (2.8)
and (2.2):

36 Proportional Counters

¹nmax
¸ = ¹ hnsei

¸ (1 ¡ F) =
F

1 ¡ F (2.10)
or

F =
¹nmax

¸
1 + ¹nmax

¸
= ¹ hnsei

¸ (2.11)
Physically, the Fano factor is therefore essentially the ratio of a mean recombination
to the ionization rate. In general F is a function of energy. From Eq. (2.11) we also
get a relation between the mean and the maximum number of secondaries

hnsei = nmax
1 + ¹nmax

¸
(2.12)

Eliminating F entirely between Eq. (2.9) and Eq. (2.11), we get the relationship
h¢n2sei
hnsei2 = ¹

¸ (2.13)
Eq. (2.6) is nothing more than the binomial distribution. When

F = ¹ hnsei
¸ ! 1 (2.14)

nmax ! 1; and the binomial distribution becomes the Poisson distribution, which is
the distribution for secondaries used by Prescott ([38]).

2.3 Statistics of electron avalanche growth: the Negative Binomial (Polya)
Distribution for Avalanche Electrons

Each secondary electron causes an avalanche of further ionizations in the high-¯eld
region close to the anode wire. In what follows we show that a simple \birth-and-
death" process, which is a generalization of the Poisson and Furry process[41] in
cosmic ray theory, produces a single electron spectrum solution known variously as
the negative binomial pdf, or Polya pdf. This pdf is found to be a close ¯t to
experimental single electron data from UV excitation[26].

The high-¯eld region is entirely distinct from the drift region of the previous
section[16]. Let x be the distance traversed by a secondary electron in this high-¯eld
region. We assume, following Arley[2] that

1. The probability of an electron being created (birth) in a small distance ¢x is
proportional to ¢x, ¸¢x, where ¸ , the e®ective ionization rate is assumed
to be a constant, and this probability is independent of the number already
present. These trigger electrons (Loeb[33], p.65), which are generated in the
background (by the secondary ionization process described above) , are essential
to the avalanche process

Statistics of electron avalanche growth: the Negative Binomial (Polya) Distribution for Avalanche
Electrons 37

2. One electron by traveling a distance ¢x can be converted into two electrons
with a probability proportional to ¢x, ¸¢x

h , where h is a further constant. This
is the so-called Furry or avalanche component.

3. Each electron has a probability ¹¢x of `dying' during the same distance ¢x,
where the e®ective recombination rate ¹ is assumed to be constant. We note,
however, that Arley obtained a solution only by assuming that this e®ective
recombination rate is zero (i.e. a pure birth process).

The birth and death rates ¸ and ¹ in the avalanche region are given the same
notation as the birth and death rates in the drift region for economy of notation,
although they are physically distinct. Since we don't use them beyond the sections
where they are de¯ned, there is no confusion.

Let rm(x) be probability of m avalanche electrons being generated. The
di®erence-di®erential equations for the probabilities rm (x) are

r0m (x) = ¡
·
¸(1 + m

h) +m¹
¸
rm(x) + (m+ 1)¹rm+1(x) + ¸

µ
1 + m¡ 1

h
¶
rm¡1(x)

(2.15)
for all m except

r00 (x) = ¡¸r0(x) + ¹r1(x) (2.16)
The solution to these equations is the negative binomial or Polya distribution

given in the Appendix:

rm (x) = ¡(m+ h)
¡(h)¡(m+ 1)

hm (x)im hh
(h+ hm (x)i)m+h (2.17)

= ¡(m+ h)
¡(h)¡(m+ 1)

"
1 + h

hm (x)i
#¡m "

1 + hm (x)i
h

#¡h

with mean

hm (x)i = h¸(e(¸h¡¹)x ¡ 1)
¸ ¡ ¹h (2.18)

and variance
D¢m2 (x)E = Dm2 (x)E¡ hm (x)i2 = @2 lnP (z; t)

@ ln z2
¯̄
¯̄
¯z=1

= hm(x)i (1 + hm (x)i
h) (2.19)

38 Proportional Counters

Since hm (xd)i is the mean number of avalanche electrons created by a single
secondary electron in a high-¯eld region of thickness xd, it is called the gas ampli¯-
cation factor Ag[27], or the gas gain:

Ag ´ hm (xd)i = h¸(e(¸h¡¹)xd ¡ 1)
¸ ¡ ¹h (2.20)

Notice that the gain shows that there is a threshold for the ionization rate
¸ = ¹h (2.21)

beyond which gas ampli¯cation sets in. This threshold behavior, which is pre-
dicted by our our simple birth-and-death model, is exactly the behavior described
in Kleinknecht[27]. Eq.(2.20)can be written as an integral:

Ag = h¸(e(¸h¡¹)xd ¡ 1)
¸¡ ¹h = ¸

Z xd
0

e(¸h¡¹)xdx (2.22)
This shows that e(¸h¡¹)x is the ampli¯cation for a single electron, which is

integrated over the background trigger electron level (assumed to be constant) to give
Ag[70]: Comparing our single electron ampli¯cation factor e(¸h¡¹)x with the expression
in Kleinknecht[27], which we will call here the Townsend gas gain ATownsend, viz.

ATownsend ´ exp
"
k
q
U0

ÃsU0
Uc
¡ 1

!#
(2.23)

we may make the following identi¯cations:
¹x = k

q
U0 (2.24)

and ¸
hx =

kU0pUc
(2.25)

Here U0 is the high voltage applied to the counter, Uc is the ionization threshold
voltage, and k a constant. There are many formulations for k itself, some more
empirical than others. For instance, Rose and Kor®[42] have derived a formula for
k which depends on the wire radius, capacitance of the wire per unit length and the
density of the gas. Others have worked out their own semi-empirical models of the
gas gain[10]. After making these identi¯cations (2.24) and (2.25), we substitute the
expressions back into the equation for hm (xd)i to get our expression for gas gain:

Ag ´ hm (xd)i = hexp
hkpU0

³qU0Uc ¡ 1´i¡ 1
1¡qUcU0

(2.26)

This is typically a large number. In our calibration work on the proportional
counters, the gas pressure and U0 are adjusted so that Ag ranges from 20; 000 for 100

Combining Secondary Electron Distribution with Avalanche Distribution to give Distribution of
Electrons Hitting Wire 39
eV X-rays to 2; 000 for 10 keV X-rays, using methane gas (400 T) and P10 (150 T)
respectively[67]. This adjustability is needed to bring the X-ray region of interest
within range of the available number of channels. The formula for gas gain (2.26)
and the identities (2.24) and (2.25) also give h as the ratio:

1
h = ¹

¸
sU0
Uc

= AT ownsend ¡ 1
Ag

³1¡qUcU0
´ ¼ AT ownsend

Ag
(2.27)

for U0 À Uc: The Polya h factor, which is the relative gas gain variance, is thus
traced to the ratio of the actual gain to that predicted by the Townsend theory or the
average number of particles, originating from a secondary electron, that started the
Townsend avalanche (which is, by de¯nition, started by a single electron). It is also
the ratio of the ionization rate to the recombination rate, multiplied by the ratio of
the speed of the electron at threshold to that at collection. Comparing Eq. (2.27)
with Eq. (2.11) we see that hnsei and

qU0Uc appear in similar roles as ampli¯cation
factors. In analogy to Eq. (2.13) we also have the relation

h¢m2 (xd)i
A2g

= 1
Ag

+ 1
h (2.28)

obtained by eliminating h between Eqs.(2.19) and (2.27).
The parameter

ÂRaether ´ h
¸

U0
Ucxd =

1
¹xd (2.29)

corresponds to Raether's parameter. Raether[39] showed that h ! 1 (simple expo-
nential SES) as ÂRaether À 1 (pure Furry process, see Appendix).

2.4 Combining Secondary Electron Distribution with Avalanche Distri-
bution to give Distribution of Electrons Hitting Wire

In this section we combine the distributions for the secondary and avalanche electrons
and deduce the moment generating function (mgf) of the detector response function
in closed form. This approach was used by Prescott. He inverted his mgf in closed
form to obtain the Prescott function. In general, however, the mgf for the detector
response function must be inverted numerically, an approach we take below.

Summarizing our results in the previous sections, we have shown that the pdf
of the number n of secondary ion-electron pairs created is the binomial distribution
given above

pnse = nmax!
(nmax ¡ nse)!nse!F

nmax¡nse(1¡ F)nse (2.30)
Each one of these ion-electron pairs then produce avalanche electrons whose

numbers m are governed by the negative binomial single electron spectrum (SES)

40 Proportional Counters

rm = ¡(m+ h)
¡(h)¡(m+ 1)

Amhh
(h+A)m+h (2.31)

Let the total number of electrons hitting the wire be l. Then the probability
Ál of l electrons hitting the wire is

Ál =
1X

nse=0
pnse

X
l=m0+m1+m2+:::mnse

rm0rm1rm2 : : : rmnse| {z } (2.32)

product of nse + 1 SES
In the second summation, the sum is over all combinations ofm0; m1; m2; : : :mnsesubject to the constraint l = m0+m1+m2+ : : :mnse. This is just the discrete convo-lution of the rms: Note that the convolution is performed over nse+1 SES, because of

the avalanche bunch created by the initial photoelectron in addition to those created
by the n secondary electrons. If we take the Z Transform of Ál, we get

© (z) ´
1X

nse=0
pnseR (z)nse+1 (2.33)

= R (z)P [R (z)]
where the Z-Transform (de¯ned in the Appendix) of the binomial distribution is

P (z) = [1 ¡ (1 ¡ F) (1 ¡ z)]nmax (2.34)
and the Z-Transform of the negative binomial distribution (also de¯ned in the Ap-
pendix) is

R(z) =
·
1 + Ag

h (1¡ z)
¸¡h

(2.35)
In the last step we have invoked the theorem[35] that the Z Transform of a

convolution is the product of Z Transforms of the individual sequences.

2.5 Charge-to-Voltage Conversion in the MCA
The basic detector electronics consist of standardized nuclear instrumentation mod-
ules (NIM), the key components of which are the preampli¯er and the ampli¯er[12].
Leaving aside its important pulse-shaping function, the preampli¯er simply provides
an output pulse proportional to the incoming electron count from the detector. The
ampli¯er then further ampli¯es this input signal. Let the e®ective capacitance of the
detector-preampli¯er combination be Cdet, and let the ampli¯er output be Vamplifier:
The multichannel analyzer (MCA) collects voltage pulses that fall into NMCA bins.
Then the `channel number' q into which a pulse falls due to an incoming electron
count of n is

Charge-to-Voltage Conversion in the MCA 41

q = eNMCA
CdetVamplifier

n (2.36)
where e is the electron charge 1:6£10¡19 coulombs giving a scale change or `electronic
gain' ¹e of

¹e ´ q
n = eNMCA

CdetVamplifier

= 55£ 10¡6
µNMCA

512
¶Ã Cdet

0:15 pF
!¡1 µVamplifier

10 V
¶¡1

(2.37)

channels per incoming electron
This is a small number, but by adjusting the gas gain so that the number of in-

coming electrons is of the order 105-106 between 100 eV and 10 keV , we can position
the peaks of the spectra (or other region of interest) comfortably within the range of
available channels. The other signi¯cance of ¹e is that it is the `granularity' along
the MCA `axis'. Its smallness suggests that we replace the pdf for discrete avalanche
electrons (the negative binomial distribution above) by a pdf for channels, but treat-
ing the channel numbers as continuous. This resulting pdf for continuous channels
is called the single electron spectrum (SES)[38]. The discrete-to-continuous conver-
sion of the pdfs is a problem of digital-to-analog conversion(DAC) in digital signal
processing(DSP). In DSP[35] it is covenient to work directly with the Z Transforms
of the distributions, rather than the distributions themselves. One transformation
which maps the Z-plane of discrete sequences into the s-plane of continuous functions
is the transformation that replaces derivatives by di®erences[35]:

z = 1¡ ¹es (2.38)
to the Z-Transform of the SES

R(z) =
·
1 + Ag

h (1¡ z)
¸¡h

(2.39)
we get the Laplace Transform P (s), which we will call the mgf of the SES:

Ra(s) =
" 1
1 + ¹s

h

#h
(2.40)

Let the channel number variable q be conjugate to the Laplace parameter s.
The mean and variance of the pdf corresponding to this mgf are given by

¹ ´ hqi = Ag¹e (2.41)
and

42 Proportional Counters

D¢q2E = ¹2
h (2.42)

The inverse Laplace Transform of Eq. (2.40) is the SES

r(q) dq = 1
¡(h)

µ¹
h
¶¡h qh¡1e¡hq

¹ dq (2.43)
for the continuous channel variable q. This pdf is what Jahoda and McCammon calls
a "Polya Distribution"[26], but we identify it more properly as a Gamma Distribution
or an Erlangian Distribution[28]. The `true' Polya Distribution is, strictly speaking,
the negative binomial distribution Eq. (2.31) above for discrete variables.

The detector response function or the probability distribution of electrons
hitting the anode wire is then a weighted sum of SESs over a binomial distribution.
We take the Z-transform of the response function and map the Z-plane into the
s-plane. We get for the pulse-height mgf

©a(s) = Ra(s)Q(Ra(s)) (2.44)
= Ra(s)(1 ¡ (1¡ F)(1 ¡Ra(s))) hnsei1¡F

=
" 1
1 + ¹

hs
#h 2
41¡ (1 ¡ F)

0
@1 ¡

" 1
1 + ¹

hs
#h1
A
3
5

hnsei
1¡F

The mean and variance for this mgf are the ¯rst two cumulants in the series
expansion of this mgf:

hqi = ¹(hnsei+ 1) (2.45)
and

D¢q2E = hqi
"
¹ hnsei
(hnsei+ 1)

µ
F + 1

h
¶#

(2.46)
respectively. The resolution

FWHM
hqi ´ 2p2 ln 2qh¢q2i

hqi (2.47)

=
2:36

r
¹ hnsei
(hnsei+1)

³F + 1
h
´

q
¹(hnsei+ 1)

¼
2:36

r³F + 1
h
´

q
hnsei

for hnsei À 1

Reduction of the General Response Function to the Prescott functions 43

is of the same form as the resolution of a proportional counter described in Fraser[16].
The fraction f = 1

h is referred to by Fraser as the relative variance of the gas gain.

2.6 Reduction of the General Response Function to the Prescott func-
tions

In this section we deduce the now-classic Prescott functions by specializing our detec-
tor response function. In general, the response function mgfs with arbitrary F; h and
¹ do not have analytical pdfs, but must be inverted numerically, with one exception.
In the limit F ! 1, h! 1, the mgf becomes

©a(s) = 1
1 + ¹s ¢ e

¡h nseie hnsei
1+¹s (2.48)

which is the Laplace Transform of the pdf

Á (q; hnsei) =
e¡hnsei¡ q

¹ I0(2
r

hnseiq
¹

¹ (2.49)
with mean

hqi = ¹(hnsei+ 1) (2.50)
and variance

D¢q2E = 2¹ hqi hnsei
(hnsei + 1) (2.51)

I0 is the zeroth order Bessel function. By taking the Inverse Laplace Transform of
the mgf with the primary electron omitted, viz.

©a(s) = e¡hnseie hnsei
1+¹s (2.52)

we get [38]:

'Pr es cot t (q; hnsei) =
e¡hnsei¡ q

¹
·r

¹hnsei
q I1

µ
2
r

hnseiq
¹

¶
+ ± ³ q

¹
´¸

¹ (2.53)

with mean

hqi = ¹ hnsei (2.54)
and variance

D¢q2E = 2¹ hnsei (2.55)

44 Proportional Counters

I1 is the ¯rst order Bessel function. Note the delta function ±
³ q
¹
´ within the Prescott

function at the origin, as ¯rst noted by Prescott[38]. If the number of secondary elec-
trons created is large, the absence and presence of the primary electron is practically
insigni¯cant. However, for low energy incoming X-rays, the presence of the primary
electron may not be negligible. Prescott considered the statistics of electrons in a
photomultiplier tube due to incoming Poisson light, with and without spontaneous
emisson of an electron from the photocathode, and Eqs.(2.49)and (2.53)are functions
named after him for these two cases.

2.7 FPC Operational Settings during Experiments
During actual calibration experiments the FPC is operated so that the FWHM is
held nearly constant[68], as part of a procedure to `optimize' the operational settings
(anode wire voltage, ampli¯er gain, lower level discriminator, etc.). The anode wire
voltage, the gas pressure and the electronic gain combine to produce the total gain.
By adjusting the gas pressure, we can adjust the total gain ¹ so that, from Eq. 2.47
above,

FWHM = 2:36
sµ

F + 1
h
¶
¹
sE°

w is a cons tan t (2.56)

This may be done to make quick-look analyses of main lines easier. The mean channel
corresponding to a main peak at E° is given by Eq. (2.45) above (for negligible E0)

hqi = ¹E°
w (2.57)

Eliminating the gain ¹ (which is adjusted to vary as E¡1=2°) between these two equa-
tions, we get a constant channel width of the main peak:

FWHM = 2:36
sµ

F + 1
h
¶ hqiqE°

w
(2.58)

= 2:36£ 250£
s 28
10; 000

sµ
F + 1

h
¶ hqi

250
q w

28eVq E°
10 keV

= 31:2
sµ

F + 1
h
¶ hqi

250
q w

28eVq E°
10 keV

channels

If the main peak at 10 keV is chosen to be at channel 250, the FWHM is
about 40 channels.

Asymptotic formulae 45

2.8 Asymptotic formulae
The author has found the approximate expression for the JM model by inverting its
Fourier transform in terms of elementary functions (powers and exponentials). This
is an approximate expression for the JM model in the same sense that

f (q) = (4¼)¡ 1
2 N 1

4

Ã q
¹
!¡ 1

4 exp
½
2
q
Nq=¹¡ q=¹¡N

¾
(2.59)

is an approximation to the Prescott model pdf for large q:

f (q) = N 1
2¹¡ 1

2 e¡Nq¡ 1
2 exp

Ã
¡ q
¹
!
I1
½
2
q
Nq=¹

¾
(2.60)

where q is the channel number, ¹ is the gain, N is the average number of ion-electron
pairs. Since the Bessel function is expensive to compute, all codes (Chartas, current
MSFC XSPEC model, etc.) uses Eq. (2.59). However, it su®ers from the defect that
it does not have unit normalization that a true pdf does, and therefore the line count
obtained from XSPEC using Eq. (2.59) will be an approximate line count.

I will quote my result

f (q) = 1p2¼ exp (qso) 1³1 + ¹so
h
´h

8><
>:1 + (1¡ F)

2
64¡1 + 1³1 + ¹so

h
´h

3
75
9>=
>;

N
1¡F

£
2
6664

h¹2
2 (h+ ¹so)2

8>>><
>>>:
1 +

N
·
1¡ F + F (1 + h) ³1 + ¹so

h
´h¸

·
1¡ F + F ³1 + ¹so

h
´h¸2

9>>>=
>>>;

3
7775

¡ 1
2

(2.61)

where so a root of

q ¡ h¹
h+ ¹so +

h¹N
(h+ ¹so)

·
¡1 + F ¡ F ³1 + ¹so

h
´h¸ = 0 (2.62)

which must be solved for numerically for general h, but is a quadratic for the special
case of h = 1. Like the approximate Eq.(2.59), it will not have unit normalization.
Eq.(2.61) is the ¯rst term of an asymptotic expansion, and is therefore good for large
q: I have not investigated this question, but I am pretty sure that it valid under the
same conditions that (2.59) is valid. Preliminary calculations indicate that (2.61)
reduces to (2.59)when h! 1 and F ! 1.

A remark about this asymptotic development. The asymptotic expression for
the JM model is much more complicated than that for the Prescott model. Like the
approximate Prescott model, it also su®ers from the fact that it does not have
exact unit normalization, and this will a®ect the all-important line count we are
trying to ¯t.

46 Proportional Counters

Chapter 3
SOLID-STATE DETECTORS

3.1 SSD mgf
A rough ¯rst model for the SSD response function is a gaussian with a constant pre-
amp noise variance. However, we know that there is a fundamental Fano limit for
these detectors[16], and the fwhm of George Chartas' old data shows a non-negligible
Fano component[9]. The average number hni of secondary electrons produced by a
photon of energy E in the depletion layer is given by

< n >= E ¡ E0
w = (1¡ F)nmax (3.1)

not counting the fundamental photoelectron. Here f is the Fano factor, and nmax is
the largest possible number of secondary electrons produced. We assume that the
discrete pdf of the secondary electrons in the SSD is, like the FPC, given by the
binomial distribution

pn =
Ãnmax

n
!
F nmax¡n(1 ¡ F)n (3.2)

with its Z-Transform
Q (z) = (1 ¡ (1 ¡ F)(1¡ z)) hni

1¡F (3.3)
Typically, w for SSDs is 10 times smaller than w for FPCs.
For SSDs, we assume there is no further charge multiplication within the

detector itself, so that the charge collected is turned into a voltage, thence into
channels. This is handled by the substitution

Ra (s) = z = exp (¡¹s) (3.4)
in the Z Transform Q(z) of the binomial distribution to get

©a(s;E°) = e s2¾2chan2 Ra(s)Q(Ra(s))
= e s2¾2chan2 Ra(s)(1 ¡ (1 ¡ F)(1¡Ra(s))) hni

1¡F (3.5)

48 Solid-State Detectors

3.2 HyperJM: modi¯ed Hypermet tails and shelves
Hypermet is a set of 5 functions used by the high energy physics community for
empirically ¯tting their detector response functions. PTB has changed one of the
Hypermet functions. These are all based on Gaussians. Here we would like to base our
set of \Hypermet-like" functions on the extende JM model above. We will tentatively
call this set HyperJM.

Since FPC spectra also contain tails and shelves, and since in the last section
we saw that SSD models are just a special case of FPC models, we will continue to use
the extended JM model as a basis for the following discussion. Let us suppose that
electrons are lost via di®usion, and obey some kind of distribution Pe(Ee) over the
energy range Eefrom 0 to the energy of the incoming monoenergetic line E° . Then
the mgf of the tail/shelf is

©(s) = es
2¾2A2 Ra(s)

Z E°

E0
(1¡ (1¡ F)(1 ¡Ra(s)))

E°¡Ee
w(1¡F)Pe (Ee) dEe (3.6)

where Ra (s) is the SES.
In particular, let us suppose that this distribution is a \tail", viz.

Pe (Ee) = e¡tl Eew tl
w (3.7)

with the tail parameter tl: Then the result of the integration is

©tail (s; tl) = es¾
2A2 Ra(s)

Z E°

E0
(1 ¡ (1 ¡ F)(1¡Ra(s)))

E°¡Ee
w(1¡f)Pe (Ee) dEe

=
es¾

2A2 Ra(s)
µ
aE0pw eE°tlw ¡ eE0tlw aE°

pw
¶
ptl

eE0pw
µ
eE°tlw ¡ eE0tlw

¶
(¡ ln (a) + ptl)

(3.8)

where

a ´ 1¡ (1¡ F)(1 ¡Ra(s))
= Ra(s) (1¡ F) + F (3.9)

and
p = 1¡ F (3.10)

This holds for both descending tails (tl Â 0)and for ascending tails (tl Á 0):
The limit tl = 0 corresponds to a °at shelf:

HyperJM: modi¯ed Hypermet tails and shelves 49

©tail (s; 0) =
es¾

2A2 Ra(s)
µ
aE0pw ¡ aE°

pw
¶
pw

eE0pw (E° ¡ E0) (¡ ln (a))
(3.11)

These all have the limit
©tail(0; tl) = 1 (3.12)

For a single incoming line, in general we need response functions for a line, a
°at shelf, an ascending and descending tail, as for instance in the following combina-
tion:

©line(s) = ©a(s) + ¯tail©tail (s; tl+) + °tail©tail (s; 0) + ±shelf©tail (s; tl¡)
1 + ¯tail + °tail + ±shelf (3.13)

The ¯fth Hypermet-like function is that for an escape peak, which is essentially
the same combination as above, except with a shifted peak.

The coe±cients ¯tail; °tail and ±shelf are fractions of the main peak and are
independent. They are not prescribed functions of energy in Version 7.0. The PTB
team seems to have a theory for these coe±cients which ¯ts a wide range of energies.

50 Solid-State Detectors

Chapter 4
CONTINUUM MODELS

4.1 Continuum X-ray emission - Kramer model
A number of di®erent X-ray sources are being used for HXDS calibration: synchrotron
radiation from BESSY, radioactive sources (X-kits), Penning plasma source, rotating
anode sources and electron impact (Manson anode) sources. In the last two sources
mentioned, X-rays are generated by deceleration of charged particles, producing con-
tinuum radiation, or by electron-transition from a ¯lled electron state into a vacancy
in a lower atomic shell, producing characteristic X-ray lines. The vacancy is caused
by charged-particle ionization or photo-ionization(°uorescence). Both line and con-
tinuum radiation are present in the measured spectra, and it becomes important to
use a semi-empirical model for the pure and detected continuum as well to extract
the line count and continuum contribution.

Kramers[31], using a semi-classical treatment, derived the following brem-
strahllung spectrum for incoming electron energy Ee :

Nc (E°) dE° = kZ (Ee ¡ E°) dE°
E°

(4.1)
with

k = 8¼e2
3p34¼"0hc5ml (4.2)

Absorption e®ects of X-rays within the source are not included in Kramers'
model.

The \quantum e±ciency" ´ (E°) of recording a photon of energy E° depends
on the transmission through a detector window of thickness twindow and the probability
of absorption inside the proportional counter itself, of thickness tfpc:

´ (E°) = ³ (E°) exp [¡¹window (E°) twindow] f1¡ exp [¡¹det ector (E°) tdet ector] (4.3)
assuming normal incidence of the X-rays, plane-parallel surfaces for the detector, win-
dow and ¯lter, and negligible edge e®ects[40]. The 1:5" by 5" proportional counter de-
tector window is made of 1¹m polyimide with a 200 ºA aluminum coating, reinforced

52 Continuum Models

by a periodic two-dimensional grid of 2-mm pitch, 100-¹m diameter Au-coated W
wires. The values of the absorption coe±cents are tabulated in the Henke Tables[22],
which are available on-line.

We weight the mgf of the single line spectral response over
exp [¡¹source (E°) tsource]´ (E°)Nc (E°)

to get the mgf of the continuum radiation. For the JMKramer models we have to
evaluate numerically the complex mgf:

©Kramer(s) =
" 1
1 + ¹

hs
#h Z Emax

Emin

2
41¡ (1¡ F)

0
@1 ¡

" 1
1 + ¹

hs
#h1
A
3
5
E°¡E0
w(1¡f)

:
´ (E°) exp [¡¹source (E°) tsource]Nc (E°) dE° (4.4)

In JMKMOD this integral is done without recalculating

F (E°; s) ´
2
41¡ (1 ¡ F)

0
@1 ¡

" 1
1 + ¹

hs
#h1
A
3
5
E°¡E0
w(1¡f)

(4.5)
using complex arithmetic during the numerical integration, an operation which is
very ine±cient.

Let us assume that the integral (Emin = E0; Emax = Ee) is divided into NE
equal segments and we apply Simpson's Rule to get

©Kramer(s) =
" 1
1 + ¹

hs
#h 2
41 ¡ (1¡ F)

0
@1¡

" 1
1 + ¹

hs
#h1
A
3
5
Emin¡E0w(1¡f)

¢E° £
8>>><
>>>:

1
2 (p0 (s) + jq0 (s)) ´ (E0) exp [¡¹source (E0) tsource]Nc (E0) +PNE¡1

k=1 (pk (s) + jqk (s)) ´ (E0 + k¢E°)£
exp [¡¹source (E0 + k¢E°) tsource]Nc (E0 + k¢E°)+

1
2 (pNE (s) + jqNE (s)) ´ (Emax) exp [¡¹source (Emax) tsource]Nc (Emax)

9>>>=
>>>;

(4.6)

where

¢E° = Emax ¡Emin
NE

(4.7)
is the integration increment, and

pk (s) = Re
2
64
2
41¡ (1¡ F)

0
@1 ¡

" 1
1 + ¹

hs
#h1
A
3
5
k¢"3

75

qk (s) = Im
2
64
2
41¡ (1¡ F)

0
@1¡

" 1
1 + ¹

hs
#h1
A
3
5
k¢"3

75 (4.8)

Continuum X-ray emission - Kramer model 53

¢" ´ ¢E°
w (1¡ F) (4.9)

This integral must be evaluated for each value of s = j 2¼k
N±q that enters into the¯nal IFFT, and we have found that this is computationally very intensive. However,

there is an e±cient recursive scheme of evaluating the following expression in the
integrand

F (E0 + k¢E° ; s) =
2
41¡ (1¡ F)

0
@1 ¡

" 1
1 + ¹

hs
#h1
A
3
5
k¢"

= pk (s) + jqk (s) (4.10)

which avoids slow complex arithmetic for the most part. We need the following values
to start:

p0 = 1 (4.11)
q0 = 0

and

p1 (s) = Re [F (E0 +¢E°; s)] = Re
8><
>:

2
41 ¡ (1¡ F)

0
@1¡

" 1
1 + ¹

hs
#h1
A
3
5
¢"9>=
>;

q1 (s) = Im [F (E0 +¢E°; s)] = Im
8><
>:

2
41 ¡ (1 ¡ F)

0
@1¡

" 1
1 + ¹

hs
#h1
A
3
5
¢"9>=
>;(4.12)

They are the only expressions that have to be evaluated using complex arithmetic.
Since by de¯nition

pk (s) + jqk (s) = (p1 (s) + jq1 (s)) (pk¡1 (s) + jqk¡1 (s)) (4.13)
we can write the following recursion relations:

pk (s) = p1 (s) pk¡1 (s)¡ q1 (s) qk¡1 (s) (4.14)
qk (s) = q1 (s) pk¡1 (s) + p1 (s) qk¡1 (s)

for k = 1; : : : ;NE: Applying the recursion relations (4.14) twice, we get

pk (s) = ³p21 (s)¡ q21 (s)
´ pk¡2 (s)¡ 2p1 (s) q1 (s) qk¡2 (s) (4.15)

qk (s) = 2p1 (s) q1 (s) pk¡2 (s) +
³p21 (s)¡ q21 (s)

´ qk¡2 (s)

54 Continuum Models

From Eqs.(4.14) and (4.15) we get the alternative recursive relations which apply
equally to pk (s) and qk (s):

Ãpk (s)
qk (s)

!
= 2p1 (s)

Ãpk¡1 (s)
qk¡1 (s)

!
¡ ³p21 (s) + q21 (s)

´Ãpk¡2 (s)
qk¡2 (s)

!
(4.16)

for k ¸ 2: This happens to be a relationship used in analog circuit design[30].
Alternatively, the number of points chosen NE can be reduced, and should be

left as a user-chosable parameter, since it is possible that choosing more points may
bring diminishing returns in continuum modeling, given the basic assumptions in the
model itself.

The number of integration points chosen NE is a user-chosable parameter,
typically chosen to be 512.

4.2 Radiation through a circular aperture at BESSY
The photon °ux Naperture (y; ®) passing through an aperture which subtends an angle
2¢ at the instantaneous position of the electron and whose surface normal is inclined
at angle ® with respect to the orbital plane of the electron is given by[?]
Naperture (y; ®)

Nsync
= 3p3y

20¼3
Z ° sin¢
0

Z 2¼
0

½³1 + Ã2´2K22=3 (») +
³1 + Ã2´Ã2K1=3 (»)

¾
¢

pp°2 ¡ p2dpd'
0dy (4.17)

with

» = y
2
³1 + Ã2´3=2 (4.18)

y = Ex
Es

(4.19)
the ratio of the X-ray energy Ex(frequency ºx)to the critical energy Es(critical fre-
quency ºs)

ºs = 3
2 ¢

µ E
mec2

¶2
¢ eBmec ¢

1
2¼ (4.20)

Es = hºs
E being the electron energy, B being the magnetic induction, and the other

symbols having their conventional meanings. The variable Ã is
Ã = sin®

q
°2 ¡ p2 ¡ p cos® sin'0 (4.21)

Radiation through a circular aperture at BESSY 55

Nsync = 10¼2Ip3e ¢ E
mec2 ¢

e2
hc (4.22)

for a current I. When ® = 0, the integral (4.17)reduces to a single integral which is
much easier to evaluate:
Naperture (y; ®)

Nsync
= 3p3y

20¼3 ¢ 4 ¢
Z ° sin ¢
0

Z 2¼
0

½³1 + p2y
´2K22=3 (») +

³1 + p2y
´ p2yK1=3 (»)

¾
¢

arctan
Ã°2 sin2¢¡ p2

° cos¢
!
dpydy (4.23)

where

» = y
2
³1 + p2y

´3=2 (4.24)
Using an aperture of 2.5mm placed at a distance 16139mm from the tangent

point on the cyclotron circle, we get a half-angle of ¢ = 0:000155 and this is the
associated parameter of the "synchrotron ¯lter" in the source/¯lter table.

56 Continuum Models

Chapter 5
PILEUP AND DEADTIME

5.1 Pulser peak
We will approximate the pulser peak by a Gaussian located at channel qpulser, whose
mgf is given by

Rpulser(s) = e¡sqpulsere s2¾2pulser
2 (5.1)

5.2 Deadtime
The pulser allows the deadtime of the counter to be measured directly. Let the true
total count rate be Ntrue; , the measured count rate be Ntotal; the measured pulser
count rate be Npulser fit, the true pulser count rate be Npulser (which is known exactly)
and the counter deadtime be ¿d: Then the following relations hold for paralyzable and
non-paralyzable counters

rate / counter paralyzable non-paralyzable
hNpulser fiti Npulser exp (¡Ntrue¿d) Npulser (1 +Ntrue¿d)¡1
D¢N2pulser fit

E Npulser
t (1 +Ntrue¿d)¡3 Npulser fit

t
Ntotal Ntrue exp (¡Ntrue¿d) Ntrue (1 +Ntrue¿d)¡1
deadtime ¿d 1

Ntrue ln
³ Npulser
Npulser fit

´ = Npulser fit
NtotalNpulser ln

³ Npulser
Npulser fit

´ 1
Ntrue

³ Npulser
Npulser fit ¡ 1´ = Npulser fit

NtotalNpulser

³ Npulser
Npulser fit ¡ 1´

Ntotal = Npulser +Ncontinuum +X
°
N° (5.2)

Ntrue = Ntotal
Npulser
Npulser fit

(5.3)

t = true counting time (5.4)
¿d = dead time (5.5)

5.3 Pileup and Inverse FFT
Let

©pileup(s) = mgf of measured count pectrum

58 Pileup and Deadtime

©a(s) = mgf of true count spectrum

s = Laplace transform parameter conjugate to channel number

½ = Ntrue

¿pu = residual characteristic pileup time
then the author has shown elsewhere that

©a (s) = ©pileup (s) e½¿pu
1 + ©pileup (s) (e½¿pu ¡ 1) (5.6)

which may be used for pileup removal, or

©pileup(s) = ©a(s) e¡½¿pu
1 ¡ (1¡ e¡½¿pu)©a(s) (5.7)

which is implemented in JMKMOD. This mgf ©pileup(s) is then inverted in the usual
way:

r(n) = 1
N±q

N¡1X
k=0

©pileup
Ã
j 2¼kN±q

!
ej 2¼knN ; n = 0; 1; : : : ; N ¡ 1 (5.8)

= 0 otherwise

Chapter 6
INVERSION OF MOMENT GENERATING FUNCTIONS

6.1 Inversion of the Moment Generating Function for the Count spec-
trum

We carry out a program to invert the mgf, which is the Laplace Transform of the pdf.
The mgf goes to 0 as s ! 1 in all parts of the complex plane s, and in particular
along the imaginary axis. Along the imaginary s axis, the mgf is just the Fourier
Transform of the response function pdf. Therefore we can invert the mgf along the
imaginary axis[4], by taking the inverse-transform of the mgf. Let the count in the
nth channel be Á(n), and let this be the sampled impulse response of the true analog
response Áa(q). That is,

Á(n) = Áa(n±q) (6.1)
where ±q = 1 is the channel `sampling period'(in channel units, of course). We keep
±q in the formulae explicitly for clarity, then set it to unity in the end.

The digital Fourier transform © is related to the analog Fourier transform
©a by[35]

©(ejµ) = 1
±q

1X
k=¡1

©a
Ã
j µ±q + j 2¼±q k

!
(6.2)

where µ ranges from 0 to 2¼: By enforcing
©a (j­) = 0; j­j ¸ ¼

±q (6.3)
all the higher frequencies (which are usually very small anyway) are eliminated, and
there would be no aliasing, so that

©(ejµ) = 1
±q©a

Ã
j µ±q

!
; jµj · ¼ (6.4)

Let this Fourier response be sampled at N equal intervals to give a ¯nite
Fourier Transform

e© (k) = ©(z)jz=ej 2¼kN = 1
±q©a

Ã
j 2¼kN±q

!
=

N¡1X
n=0

Á (n) e¡j 2¼knN (6.5)

60 Inversion of Moment Generating Functions

This can be inverted (via inverse FFT) to give the response function pdf in counts
per channel:

Á(n) = 1
N

N¡1X
k=0

e©(k) ej 2¼knN ; n = 0;1; : : : ; N ¡ 1

= 1
N±q

N¡1X
k=0

©a
Ã
j 2¼kN±q

!
ej 2¼knN ; n = 0; 1; : : : ; N ¡ 1

= 0 otherwise (6.6)
For FPCS, we replace ±q with

±q = 1 (6.7)
and < nse > with Eq. (2.1) above

< nse >= E° ¡ E0
hwi

noting that hwi is the mean ionization energy per ion-electron pair created by the
incoming X-ray with energy E° [1], and E0 is the energy o®set[26], to get

Á(n) = 1
N

N¡1X
k=0

Ra
Ã
j 2¼kN±q

!"
1¡ (1¡ F)

Ã
1¡Ra

Ã
j 2¼kN±q

!!# E°¡E0
hwi(1¡F) ej 2¼knN (6.8)

for n = 0;1; : : : ; N ¡ 1;and 0 otherwise. Here Ra is the SES.
This is the ¯nal form of our pulse height response function for a sharp incoming

line of energy E°, which we shall call the Extended JM (EJM) pdf. It is characterized
by 6 parameters: E°; E0; w; F; ¹ and h. That we are able to characterize it so
succinctly is due to the availability of a closed form for the analog mgf ©a:

The number of computational channels N does not have to be and indeed
must not be the same as the number of physical channels Nc: We often choose

N = 2Nchan (6.9)
so that there is enough of a `bu®er' between the last computational channel and the
¯rst, bearing in mind that the Discrete Fourier Series wraps around after a `period'
of N . If a continuum background is present up to an energy Emax, the number of
channels should be chosen so that N Â ¹Emax

w :

Chapter 7
RELATIVE AND ABSOLUTE CALIBRATION GOALS

7.1 AXAF calibration goals
The Advanced X-ray Astrophysical Facility (AXAF) is NASA's third Great Space
Observatory, and is scheduled for a shuttle launch in the late 1990's[69]. Of central
interest to the calibration of the four Wolter Type-I mirror pairs, known as the High
Resolution Mirror Assembly (HRMA), is the prelaunch measurement of the intensity
distribution of the X-ray beam spot or point response function of the mirror in the
focal plane.

The measurements, conducted in 1996 and 1997 at the X-ray Calibration Facil-
ity (XRCF) of the NASA Marshall Space Flight Center (MSFC), consist of sampling
the intensity distribution of the beam in the vicinity of the beam center and at or
near the focal plane. The photon counts are recorded by X-ray detectors: 7 °ow(gas)
proportional counters (FPCs) and 2 Ge solid state detectors (SSDs) located at di®er-
ent stations along the facility optical axis. Some of the criteria to be met for detection
calibration are:

1. Detector livetimes to within 0.25%.
2. Detector absolute QEs to 1%.
3. Detector relative QEs to less than 0.17%.
4. X-ray line counts to 0.2% by ¯tting the detected count spectrum to models of

the FPCs and SSDs.

In these criteria, the absolute quantum e±ciency (q.e.) ´ (0 · ´ · 1) of
the detector is de¯ned as the probability that a single photon incident on the de-
tector generates an ion-electron pair that contributes to the detector count[44]. Not
all ion-electron pairs produced are collected because of electron di®usion losses or
recombination. The absolute q.e. of recording a photon of energy E° depends on
the transmission through a detector window of thickness xwindow and the probability
of absorption inside the proportional counter itself, of thickness xfpc, and may be
written as

62 Relative and absolute calibration goals

´ (E°) = ³ (E°) exp
"
¡
Ã¹window (E°)

½window
!
½windowxwindow

#

(
1 ¡ exp

"
¡
Ã¹fpc (E°)

½fpc
!
½fpcxfpc

#)
(7.1)

assuming normal incidence of the X-rays, plane-parallel surfaces for the detector and
window. Here ³ (E°) is a catch-all term for the fraction of electron-ion pairs that do
not contribute to useful photocurrent, and also for any edge e®ects not accounted
for by the simple geometry assumed in the transmission and absorption factors[40]..
Absolute q.e. calibration reduces to the precise determination of this correction term
³ (E°) : This quantity, ³ (E°) ; must be close to unity across a broad range of E°, for
if it were not, the continuum would have been poorly ¯t.

The absolute q.e. is only part of the detector pulse height response function,
which is de¯ned as the product

' (q;E°) = ´ (E°)Á (q;E°) (7.2)
Here Á (q;E°) ;the probability distribution function (pdf) for the °uctuations in pulse
height channel number q as a result of an incoming photon of energy E°: Sometimes
this pdf itself is called the detector response function.

The predicted pulse height Cp (q) at channel q is the convolution of the detector
response function ' (q;E°)with a source spectrum S(E°) and any intervening ¯lters
f(E°) between the source and detector

Cp(q) =
Z 1
0

' (q;E°) f(E°)S(E°)dE° (7.3)
From the point of view of the calibration of the X-ray mirror optics, the HRMA
e®ective area (de¯ned as re°ection coe±cient £ mirror area) may be considered just a
factor in the f(E°): The S(E°) consists principally of characteristic K and L emission
lines from the anode material superimposed on a bremsstrahlung continuum of an
electron impact X-ray source[72]. Properly selected ¯lters, which form part of the
f(E°), suppress the bremsstrahlung continuum and low energy photons. As a rule
which is not strictly enforced, ¯lters are made of the same material as the target
source since the characteristic emission energy of an element is slightly below the
absorption edge energy. A pure element is \transparent" to its own emission lines.
Filter thicknesses are chosen to attenuate the X-ray beam by a factor of 2 - 5 at the
energy of interest.

For spectral calibration, the principal task is to determine the strengths of the
emission lines from the source over and above the continuum and their overlap with
other lines in the pulse height count spectrum. It cannot be more fully emphasized,
therefore, that all the other parameters, such as detector characteristics, source char-
acteristics, etc., while important in their own supporting roles and which form the

AXAF calibration goals 63

backbone of the detector modeling described in this paper, are in the end subservient
to the the determination of the strengths of the emission lines.

The relative q.e. is the ratio of the q.e.s of two detectors at some energy,
obtained by simultaneously measuring the °ux from the same source. For this mea-
surement, the source may be time varying and its absolute °ux needs not be known to
great precision. This imprecision cannot be tolerated for absolute q.e. measurements,
which demand a °ux from a source known to great precision, such as that from the
BESSY synchrotron.

Preliminary calibration of the HXDS detectors and software testing have been
conducted at the Smithsonian Astrophysical Observatory (SAO) X-ray Pipe facility,
at the XRCF at MSFC before December 1996, and by SAO at the PTB (BESSY
synchrotron in Berlin). These are all dedicated to the calibration of the detectors
themselves, without the presence of the HRMA. The HRMA was introduced after
December 1996. JMKMOD can be used for detector calibration, HRMA e®ective
area determination and the absolute calibration of the

64 Relative and absolute calibration goals

Chapter 8
CONCLUSIONS

We have shown that the distributions, taken as assumptions by various authors for the
secondary and the avalanche electrons in a proportional counter, viz. the binomial
and negative binomial distributions, respectively, can be deduced from birth-and-
death processes commonly used to study cosmic rays and other stochastic processes.
One immediate insight is to arrive at the actual physical sign¯cance of the Fano factor
f and the Polya h factor. The former is related to the ratio of the recombination to
the ionization rates. The latter is the number of ratio of the actual gas gain to the
gain calculated from Townsend's theory of discharges.

We conclude that the present fpc model as implemented by XSPEC is an
excellent tool for ¯tting fpc data. Speci¯cally, what we have done is to have:

1. Summed the Laplace Transform of the Jahoda-McCammon-Alkhazov (JM) dis-
tribution (or moment generating function, mgf) in closed form. This Laplace
Transform cannot be inverted analytically to give the JM distribution in channel
space.

2. Checked that a special case of JM inverted analytically exactly to the well-
known Prescott function by specialization of two parameters, Eq.

3. Numerically inverted the mgf. Straightforward inversion of the Laplace Trans-
form being unstable, we exploited the fact that that we are dealing with a
probability distribution function that vanishes at1 to invert the mgf along the
imaginary axis, which is just a Fourier Transform. We successfully ran a series
of tests to check that the numerically inversion of a special case of the JM distri-
bution did indeed to the Prescott function to within the desired computational
precision.

4. Applied the algorithm to ¯t line(s) and continuum (Kramers model smeared out
by the detector response function) to determine a single set of parameters of the
detector response function which best ¯tted the data for line and continuum
simultaneously.
The inversion of the moment generating function by the fast Fourier Transform

method is the only convenient way of getting a distribution based on the theories of

66 Conclusions

Alkhazov and Jahoda-McCammon to ¯t the data. Jahoda and McCammon in their
paper[26] used an in¯nite series for their distribution, each term of which contains a
Gaussian multiplying into an Erlangian (approximate Polya) distribution. They had
to truncate their series at some point, and that point is actually one of the parameters
we are trying to ¯t: the maximum number of secondary electrons created, Eq. The
computer program they have for carrying out their calculations is directed towards
generating the detector response function when the parameters are already known.
The model we have developed in this paper, which is in a sense an extension to
their model and Alkhazov's, reduces their entire computer program into an analytical
expression suitable for calibration.

Further developments in spectral ¯tting will be pursued in the following areas:
1. Enhancing the models. Some areas of concern, like shelves and tails, need a

comprehensive theory.
2. Improving the continuum bremsstrahlung model by including e®ects of X-ray

absorption in the target, such as the Pella model.
3. Improving the pileup model to account for `non-ideal' e®ects.
4. Incorporating a HRMA model which can be ¯tted.

Part IV
JMKMOD Software Guide

67

Chapter 9
ARCHITECTURE

9.1 Software architecture
The overall architecture of JMKMOD is given in Figure 1. A more detailed modular
layout is shown in Figure 2. The data °ow is shown in Figure 3.

Note that we are addressing the ¯rst-level processing, when all the parameters
are determined as a function of energy as a result of the measured response to discrete
lines. In second-level processing, it may be envisaged that the energy dependence of
these parameters may be used to improve the continuum ¯tting and the line ¯tting
as well.

70 Architecture

spectral fitting true count rate from deadtime

unit diagonal
response matrix

ssd

fpc

line models
including escape peaks

HRMA
effective area

continuum models

filter and q.e. model

 filtered continuum pulser peak

grand sum mgf

pileup operation

inverse FFT

XSPEC
detector
library

Figure 1 Overall architecture of JMKMOD.

Software architecture 71

2nd pass q.e. &
local parameters

local quantum efficiency

diagonal
response matrix

amp/preamp broadening
channel zero shift

shelf&tail
may differ from

fpc

e/noise+fano
may differ from

fpc

ssd

shelf&tail e/noise+fano+polya

fpc

line models
including escape peaks

line models HRMA
effective area

mean gain

filter
q.e., etc.

synchrotron Kramers Pella natural l/w

filter and q.e. model

 filtered continuum
convolved with line model

(using recursion)

pulser peak

grand sum mgf

pileup operation

inverse FFT

XSPEC
detector
library

spectral fitting display results

deadtime corrections

Figure 2 Detailed layout of software code showing major modules.

72 Architecture

hxda
Type title here
2fpcs, 1 active

1 ssd

bnd-500
Type title here
1 mapper fpc

1 ssd

bnd-h
Type title here

3 fpcs
1 mapper fpc

archive
expt. parameters

.rdb files

.pha to .fits conversion
pha2fits(Jerius/Edgar)

quick-look roi

archive
xspec2rdb (Keleti)

.log to .rdb files

archive
relative q.e.s

and mirror effective area

offline computation
q.e. relative to

bnd-500 &
each other

log files
.log

xspec spectral fitting
line strengths

(Edgar batch mode)

archive
expt. parameters

.rdb files

raw data
.pha files

raw data
.pha files

tma or hrma
(yes or no)

Figure 3 Data °ow

Chapter 10
CODE

10.0.1 params.for
Remark 1 An include ¯le for Fortran commons

cc
c Programmer: Eugene Tsiang c
c AXAF Mission Support Team c
c Date: 8/26/96 c
c Place: Smithsonian Astrophysical Observatory, Cambridge, MA c
c Spectral Analysis Program for XSPEC Revision 6.00 c
c Module name: params.for, an include ¯le
c include ¯le \params.for\ de¯nes all the common blocks
c10/9/96 added synchrotron block
c 12/30/96 added ice
c 12/31/96 added absolute switch and e®ective area parameters
cc
c added 10/9/96 for synchrotron radiation
common/bessyfac/yenergy, bessyEcrit, bessy°uxnorm,
1 bessyEnorm, bessyBnorm, bessyInorm, bessyEnergy, bessyB¯eld,
2 bessyI, boost, sind, boostsind, boostsind2,
3 boostcosd, tand, enercrit, °uxconst, boostnorm,
4 b¯eld, current, incline
double precision bessyEcrit, bessy°uxnorm,
1 bessyEnorm, bessyBnorm, bessyInorm, bessyEnergy, bessyB¯eld,
2 bessyI, boost, sind, boostsind, boostsind2,
3 boostcosd, tand, enercrit, °uxconst, boostnorm,
4 b¯eld, current, incline
double precision yenergy(512)
c above added 10/9/96 for synchrotron radiation, abswitch added 12/31/96
c added 12/31/96 e®ective area option
common/hrma/phi, theta, shell
double precision phi, theta
integer shell, singlelimit

74 Code

c above added 12/31/96 for hrma e®ective area
integer integral, linelist, elemlist, srclist, maxhenke
c the array sizes for integration and number of lines,
c number of ¯lter elements, number of source ¯lters, initialized by
c blockdata statement
parameter (integral = 1024, elemlist = 50, singlelimit = 42,
1 srclist = 16, linelist = 32, maxhenke = 1024)
c singlelimit was 42, 12/31/96
double precision fano, polyaH, eO®,
1 ionEn, gain, dgain, shift, sigma
common/modvar/ fano, polyaH, eO®,
1 ionEn, gain, dgain, shift, sigma
double precision eChar, eWidth, eCont, eMax, eMin, contnorm,
1 pulsepos, pulsesigma, pulsenorm,
2 linenergy(linelist), linenorm(linelist)
common/spread/eChar, eWidth, eCont, eMax, eMin, contnorm,
1 pulsepos, pulsesigma, pulsenorm, linenergy, linenorm
c WARNING! Make sure linenorm has enough room for all line AND
c continuum components!!!! 1/2/97
double precision temper, pressure, argrat
common/detfpc/temper, pressure, argrat
integer shelfswitch, pulser, continuum, sestype, abswitch
double precision t1norm, t2norm, shelfnorm, t1par, t2par
common/shelf/t1norm, t2norm, shelfnorm, t1par, t2par,
1shelfswitch, abswitch, sestype, pulser, continuum
integer pileup
double precision pilepar
common/pur/ pilepar, pileup
character*2 elemName(elemlist)
double precision elemWate(elemlist), elemDens(elemlist),
1 elemThick(elemlist)
integer parylene,polyimide,polypro,kramers,synchro,e®area,
1 ssdgerm,fpcp10,fpcmeth,gnplace,unplace,geplace,
2 oplace,hplace,nplace,arplace,xeplace,cplace,alplace,
3 pella, ice
common/element/
1 elemWate, elemDens, elemThick, elemName,
2 parylene,polyimide,polypro,kramers,synchro,
3 e®area,ssdgerm,fpcp10,fpcmeth,gnplace,unplace,geplace,
4 oplace, hplace, nplace, arplace, xeplace, cplace, alplace,
5 pella, ice
c initialized by blockdata statement

Code 75

integer srcstack(srclist)
double precision srcthick(srclist), srcdamp(integral,srclist)
common/¯lstack/srcstack, srcthick, srcdamp
double precision mypi, pebble, half, one, two, torr, stddens,
1 abzero
common/diamond/mypi, pebble, half, one, two, torr, stddens,
1 abzero
c initialized by blockdata statement
double precision dEmax, eArray(integral), evArr(integral),
1 alldamp(integral)
common/enerMax/dEmax, eArray, evArr, alldamp
integer nInt, nInt1, nChan, tChan, tChan1, num¯lter, numcomp
double precision deltaE
double complex piDelt
common/enint/piDelt, deltaE,
1nInt, nInt1, nChan, tChan, tChan1, num¯lter, numcomp
common/°agship/eMaxOld, eMinOld, dEmaxOld, ener°ag
double precision eMaxOld, eMinOld, dEmaxOld
integer ener°ag

10.0.2 SUBROUTINE beschb(x,gam1,gam2,gampl,gammi)
Remark 2 A Bessel function evaluation routine, from Numerical Recipes.

INTEGER NUSE1,NUSE2
DOUBLE PRECISION gam1,gam2,gammi,gampl,x
PARAMETER (NUSE1=5,NUSE2=5)
CU USES chebev
REAL xx,c1(7),c2(8),chebev
SAVE c1,c2
DATA c1/-1.142022680371172d0,6.516511267076d-3,3.08709017308d-4,
*-3.470626964d-6,6.943764d-9,3.6780d-11,-1.36d-13/
DATA c2/1.843740587300906d0,-.076852840844786d0,1.271927136655d-3,
*-4.971736704d-6,-3.3126120d-8,2.42310d-10,-1.70d-13,-1.d-15/
xx=8.d0*x*x-1.d0
gam1=chebev(-1.,1.,c1,NUSE1,xx)
gam2=chebev(-1.,1.,c2,NUSE2,xx)
gampl=gam2-x*gam1
gammi=gam2+x*gam1
return
END
C (C) Copr. 1986-92 Numerical Recipes Software %5'KNp='.

76 Code

10.0.3 subroutine bessy°ux(damping)
Remark 3 BESSY number °ux calculation

include 'params.for'
double precision damping(nInt)
real*4 yvalue
common/besspec/yvalue
real*4 bessyhole
external bessyhole
real*4 pihalf, evalue, syncons, result
integer i
pihalf = 1.570796327
syncons = 0.03351677775621519
* print *, 'In bess°ux, i, yvalue, evalue, normresult, result = '
do 500 i = 1, nInt
evalue = earray(i)
yvalue = evalue/bessyEcrit
yenergy(i) = yvalue
* print *, i, yvalue, evalue
call qsimp(bessyhole,0.,pihalf,result)
damping(i) = bessy°uxnorm*evalue*result
* print *, i, yvalue, evalue, syncons*yvalue*result, damping(i)
500 continue
return
end

10.0.4 real*4 function bessyhole(alpha)
Remark 4 BESSY synchrotron radiation integrand

include 'params.for'
real*4 alpha
real*4 yvalue
common/besspec/yvalue
real*4 shalf, third, sone, onehalf, pi
parameter (shalf = 0.5, third = 1./3., sone = 1.)
parameter (onehalf = 1.5, pi = 3.141592654)
real*4 gamcosangle, angpart, dummy1, xsi, ri, rip, py, py2
real*4 koneth, konethp, ktwoth
py = boostsind*sin(alpha)
py2 = py*py
gamcosangle = sqrt(abs(boostsind2 - py2))
angpart = atan(gamcosangle/boostcosd)
* print *, 'In bessyhole, gamsind, gamcosd, angpart = '

Code 77

* print *, gamsind, gamcosd, angpart
dummy1 = sone + py2
xsi = yvalue*shalf*dummy1**onehalf
call bessik(xsi, third, ri, koneth, rip, konethp)
* print *, 'xsi, ri, rip, koneth, konethp = '
* print *, xsi, ri, rip, koneth, konethp
ktwoth = -konethp - third*koneth/xsi
bessyhole = gamcosangle*angpart*dummy1*(dummy1*ktwoth*ktwoth +
1 py2*koneth)
* print *, 'yenergy, py2, dummy1, ktwoth, integrand = '
* print *, yenergy, py2, dummy1, ktwoth, integrand
return
end

10.0.5 subroutine bessik(x,xnu,ri,rk,rip,rkp)
Remark 5 Bessel function calculation, from Numerical Recipes

INTEGER MAXIT
REAL ri,rip,rk,rkp,x,xnu,XMIN
DOUBLE PRECISION EPS,FPMIN,PI
PARAMETER (EPS=1.e-10,FPMIN=1.e-30,MAXIT=10000,XMIN=2.,
*PI=3.141592653589793d0)
CU USES beschb
INTEGER i,l,nl
DOUBLE PRECISION a,a1,b,c,d,del,del1,delh,dels,e,f,fact,fact2,®,
*gam1,gam2,gammi,gampl,h,p,pimu,q,q1,q2,qnew,ril,ril1,rimu,rip1,
*ripl,ritemp,rk1,rkmu,rkmup,rktemp,s,sum,sum1,x2,xi,xi2,xmu,xmu2
if(x.le.0..or.xnu.lt.0.) pause 'bad arguments in bessik'
nl=int(xnu+.5d0)
xmu=xnu-nl
xmu2=xmu*xmu
xi=1.d0/x
xi2=2.d0*xi
h=xnu*xi
if(h.lt.FPMIN)h=FPMIN
b=xi2*xnu
d=0.d0
c=h
do 11 i=1,MAXIT
b=b+xi2
d=1.d0/(b+d)
c=b+1.d0/c
del=c*d

78 Code

h=del*h
if(abs(del-1.d0).lt.EPS)goto 1
11 continue
pause 'x too large in bessik; try asymptotic expansion'
1 continue
ril=FPMIN
ripl=h*ril
ril1=ril
rip1=ripl
fact=xnu*xi
do 12 l=nl,1,-1
ritemp=fact*ril+ripl
fact=fact-xi
ripl=fact*ritemp+ril
ril=ritemp
12 continue
f=ripl/ril
if(x.lt.XMIN) then
x2=.5d0*x
pimu=PI*xmu
if(abs(pimu).lt.EPS)then
fact=1.d0
else
fact=pimu/sin(pimu)
endif
d=-log(x2)
e=xmu*d
if(abs(e).lt.EPS)then
fact2=1.d0
else
fact2=sinh(e)/e
endif
call beschb(xmu,gam1,gam2,gampl,gammi)
®=fact*(gam1*cosh(e)+gam2*fact2*d)
sum=®
e=exp(e)
p=0.5d0*e/gampl
q=0.5d0/(e*gammi)
c=1.d0
d=x2*x2
sum1=p
do 13 i=1,MAXIT

Code 79

®=(i*®+p+q)/(i*i-xmu2)
c=c*d/i
p=p/(i-xmu)
q=q/(i+xmu)
del=c*®
sum=sum+del
del1=c*(p-i*®)
sum1=sum1+del1
if(abs(del).lt.abs(sum)*EPS)goto 2
13 continue
pause 'bessk series failed to converge'
2 continue
rkmu=sum
rk1=sum1*xi2
else
b=2.d0*(1.d0+x)
d=1.d0/b
delh=d
h=delh
q1=0.d0
q2=1.d0
a1=.25d0-xmu2
c=a1
q=c
a=-a1
s=1.d0+q*delh
do 14 i=2,MAXIT
a=a-2*(i-1)
c=-a*c/i
qnew=(q1-b*q2)/a
q1=q2
q2=qnew
q=q+c*qnew
b=b+2.d0
d=1.d0/(b+a*d)
delh=(b*d-1.d0)*delh
h=h+delh
dels=q*delh
s=s+dels
if(abs(dels/s).lt.EPS)goto 3
14 continue
pause 'bessik: failure to converge in cf2'

80 Code

3 continue
h=a1*h
rkmu=sqrt(PI/(2.d0*x))*exp(-x)/s
rk1=rkmu*(xmu+x+.5d0-h)*xi
endif
rkmup=xmu*xi*rkmu-rk1
rimu=xi/(f*rkmu-rkmup)
ri=(rimu*ril1)/ril
rip=(rimu*rip1)/ril
do 15 i=1,nl
rktemp=(xmu+i)*xi2*rk1+rkmu
rkmu=rk1
rk1=rktemp
15 continue
rk=rkmu
rkp=xnu*xi*rkmu-rk1
return
END
C (C) Copr. 1986-92 Numerical Recipes Software %5'KNp='.

10.0.6 FUNCTION chebev(a,b,c,m,x)
Remark 6 Chebechev routine in Bessel Function computation, from Numerical Recipes.

INTEGER m
REAL chebev,a,b,x,c(m)
INTEGER j
REAL d,dd,sv,y,y2
if ((x-a)*(x-b).gt.0.) pause 'x not in range in chebev'
d=0.
dd=0.
y=(2.*x-a-b)/(b-a)
y2=2.*y
do 11 j=m,2,-1
sv=d
d=y2*d-dd+c(j)
dd=sv
11 continue
chebev=y*d-dd+0.5*c(1)
return
END
C (C) Copr. 1986-92 Numerical Recipes Software %5'KNp='.
cc
c Programmer: Eugene Y. Tsiang c

Code 81

c AXAF Mission Support Team c
c Date: 8/26/96 c
c Change dates: 8/27/96
c Place: Smithsonian Astrophysical Observatory, Cambridge, MA c
c Spectral Analysis Program for XSPEC Revision 6.00 c
c Module name: ctmmgf.f c
cc

10.0.7 double complex function ctmmgf(slap,mgf)
Remark 7 Continuum moment generating function calculation, accelerated method

c moment generating function for continuum smoothed by mgf, at slap
include 'params.for'
* double complex slap, sglmgf, sglshelf, mgf, dMgf
double complex slap, sglmgf, mgf, dMgf
external mgf
double precision reMgf(integral), imMgf(integral), tmpor1, tmpor2
double precision oldE, twoMgf, sqrMgf
integer k
c the array 'alldamp(nInt)' is already in place due to damper
c called in jmkmod
c start the recursion, do for incremental dEmax
oldE = eChar
eChar = dEmax
* if (shelfswitch.eq.0) then
* dMgf = sglmgf(slap, mgf)
* else
* dMgf = sglshelf(slap,mgf)
c wrong!
c shelves and tails demand their own accelerators, 8/27/96, EYT
* endif
dMgf = sglmgf(slap, mgf)
c convolve only bare mgfs with continuum
c this is the germ mgf
eChar = oldE
c reset eMax to old eMax
** print *, 'dMgf in ctmmgf =', dMgf
reMgf(1) = one
imMgf(1) = 0.
reMgf(2) = dreal(dMgf)
imMgf(2) = dimag(dMgf)
twoMgf = two*reMgf(2)
sqrMgf = reMgf(2)*reMgf(2) + imMgf(2)*imMgf(2)

82 Code

Do 300 k = 3, nInt
reMgf(k) = twoMgf*reMgf(k-1) - sqrMgf*reMgf(k-2)
imMgf(k) = twoMgf*imMgf(k-1) - sqrMgf*imMgf(k-2)
300 continue
c this generates the real and imaginary parts of mgf at di®erent
c energies, for a ¯xed Laplace parameter slap
** print *, 'slap = ', slap, ', Mgf in ctmmgf = '
** do 150 k = 1, nInt
** print *, reMgf(k), ',', imMgf(k)
** 150 continue
tmpor1 = (reMgf(1)*alldamp(1) + reMgf(nInt)*alldamp(nInt))*half
tmpor2 = (imMgf(1)*alldamp(1) + imMgf(nInt)*alldamp(nInt))*half
c Simpson's rule of integration
do 400 k = 2, nInt1
tmpor1 = tmpor1 + reMgf(k)*alldamp(k)
tmpor2 = tmpor2 + imMgf(k)*alldamp(k)
400 continue
tmpor1 = tmpor1*dEmax
tmpor2 = tmpor2*dEmax
c this normalization wrt dEmax may not be needed!
** print *, 'tmpor1 in ctmmgf = ', tmpor1
** print *, 'tmpor2 in ctmmgf = ', tmpor2
c this is the convolution
ctmmgf = dcmplx(tmpor1,tmpor2)
** print *, 'last stand: ctmmgf in ctmmgf = ', ctmmgf
c this is the continuum mgf for a ¯xed Laplace slap
return
end

10.0.8 Block Data initje
Remark 8 Initialization of source/¯lter tables, de¯nition of constants

cc
c Programmer: Eugene Tsiang c
c AXAF Mission Support Team c
c Date: 8/26/96 c
c Place: Smithsonian Astrophysical Observatory, Cambridge, MA c
c Spectral Analysis Program for XSPEC Revision 6.00 c
c Module name: initje.f c
c Modi¯cations:
c Added polypro, Mn 9/11/96
c 9/16/96 Changed stddens to 4.4614113d-5
cc

Code 83

block data initJe
include 'params.for'
c special nonelements:
c 'p1' is parylene
c 'p2' is polyimide
c 'p3' is mylar (density wrong)
c 'p4' is te°on (polytetra°uoroethylene, CF2)
c 'p5' is pn (ammonium dihydrogen phosphate, density wrong)
c 'p6' is pvc (polyvinyl chloride, density wrong)
c 'p7' is polypropylene (CH2), density 0.9
c 'ks' is the kramers continuum
c 'sy' is the synchrotron radiation spectrum
c 'gx' is the germanium quantum e±ciency
c 'ax' is the fpc p10 quantum e±ciency
c 'mx' is the fpc methane quantum e±ciency
c 'ea' is the e®ective area of the mirror
c 'gn' is the gaussian
c 'px' is the pella continuum
c 'un' is the all-pass (unity) ¯lter
data parylene/5/
data polyimide/19/
data polypro/47/
data kramers/35/
data synchro/36/
data e®area/40/
data ssdgerm/37/
data fpcp10/38/
data fpcmeth/39/
data alplace/2/
data cplace/6/
data oplace/20/
data hplace/21/
data nplace/22/
data arplace/23/
data xeplace/24/
data gnplace/41/
data unplace/45/
data geplace/32/
data pella/42/
data ice/48/
data elemname/'mo','al','zr','cu','p1',
1 'c' ,'be','b' ,'cr','fe',

84 Code

2 'ni','zn','mg','ti','ag',
3 'in','v' ,'co','p2','o' ,
4 'h' ,'n' ,'ar','xe','sn',
5 'nb','w' ,'p3','p4','p5',
6 'p6','ge','si','f' ,'ks',
7 'sy','gx','ax','mx','ea',
8 'gn','px','au','ir','un',
9 'mn','p7','ic',' ',' '/
c Nominal aluminum thickness of fpc window is 2.d-6 cm or 200A
c Polyimide window is 1.065 microns thick
data elemThick/ 2.0d-4, 1.0d-4, 2.0d-4, 0.5d-4, 0.0d0 ,
1 2.5d-4, 2.0d-4, 1.0d-4, 1.0d-4, 0.6d-4,
2 0.5d-4, 2.5d-4, 1.5d-3, 4.0d-4, 1.0d-4,
3 5.0d-4, 2.0d-3, 2.5d-3, 1.065d-4, 0.0d0 ,
4 0.0d0 , 0.0d0 , 0.0d0 , 0.0d0 , 1.0d-4,
5 1.0d-4, 1.0d-4, 0.0d0 , 0.0d0 , 0.0d0 ,
6 0.0d-4, 1.0d-4, 1.0d-4, 0.0d0 , 0.0d0 ,
7 1.55d-4,1.0d-1, 5.36 , 5.36 , 0.0d0 ,
8 0.0d0 , 0.0d0 , 1.d-4 , 1.d-4 , 0.0d0 ,
9 1.0d-4, 1.d-4 , 1.d-4 , 0.0d0 , 0.0d0 /
data elemWate/ 95.94000, 26.98154, 91.22000, 63.54600, 0.00000,
1 12.01115, 9.01218, 10.81400, 51.99600, 55.84700,
2 58.69000, 65.38700, 24.31000, 47.87900,107.86800,
3 114.81800, 50.94150, 58.93300, 0.00000, 25.99940,
4 1.00797, 14.00672, 39.94800,131.29000,118.69000,
5 92.90640,183.85000, 0.00000, 0.00000, 0.00000,
6 0.00000, 72.59000, 28.08550, 18.99840, 0.00000,
7 0.00000, 0.00000, 0.00000, 0.00000, 0.00000,
8 0.00000, 0.00000,196.96650,192.22000, 0.00000,
9 54.93805, 0.00000, 0.00000, 0.00000, 0.00000/
data elemDens/ 10.20, 2.70, 6.49, 8.96, 1.10,
1 2.66, 1.82, 2.47, 7.19, 7.87,
2 8.91, 7.13, 1.74, 4.51, 10.50,
3 7.29, 6.09, 8.90, 1.44, 0.00,
4 0.00, 0.00, 0.00, 0.00, 7.30,
5 8.55, 19.30, 1.00, 1.00, 1.00,
6 1.00, 5.32, 2.33, 0.00, 0.00,
7 0.00, 0.00, 0.00, 0.00, 0.00,
8 0.00, 0.00, 19.30, 22.50, 0.00,
9 7.47, 0.95, 1.00, 0.00, 0.00/
data mypi, pebble, half, one, two, torr, stddens, abzero/
1 3.141592653589793,1.d-8,5.d-1, 1.d0, 2.d0, 760.0,

Code 85

2 4.4614113d-5, 273.15/
data bessyEnorm, bessyBnorm, bessyInorm, °uxconst, boostnorm,
1enercrit/
27.8e5, 1.45e4, 1., 6.139996366423063e6, 1526.406838302636,
3 0.5866605793269655/
end
cc
c Programmer: Eugene Tsiang c
c AXAF Mission Support Team c
c Date: 8/26/96 c
c Place: Smithsonian Astrophysical Observatory, Cambridge, MA c
c Spectral Analysis Program for XSPEC Revision 6.00 c
c Module name: invert.f
cc

10.0.9 subroutine invert(mgfarr, pdfarr)
Remark 9 inversion of moment generating function given an array of mgfs

c inverts a general mgf array mgfarr(tChan)
c to give a real pdf pdfarr(tChan)
c max channel 4096*4 = 16384
include 'params.for'
double precision dummy1, dummy2
integer i
double precision dumarr(16384), pdfarr(tChan)
double complex mgfarr(tChan)
* print *, 'In invert, mgfarr = ', mgfarr
* print *, 'In invert,', 'nchan = ', nchan
c convert double complex array mgfarr to single real array dumarr
do 10 i = 1, tChan
dumarr(2*i -1) = dble(mgfarr(i))
dumarr(2*i) = dimag(mgfarr(i))
10 continue
* print *, 'Before four1, dumarr = '
* do 850 i = 1, tChan
* print *, dumarr(2*i-1), dumarr(2*i)
* 850 continue
c Inverse Fourier transform
call four1(dumarr, tChan, -1)
* print *, 'After four1, dumarr = '
* do 860 i = 1, tChan
* print *, dumarr(2*i-1), dumarr(2*i)
* 860 continue

86 Code

c take the absolute value, divide by tChan for correct normalization
do 40 i = 1, tChan
dummy1 = dumarr(2*i - 1)
dummy2 = dumarr(2*i)
pdfarr(i) = (dsqrt(dummy1*dummy1 + dummy2*dummy2))/tChan
40 continue
return
end

10.0.10 SUBROUTINE FOUR1(DATA,NN,ISIGN)
Remark 10 Inverse Fast Fourier Transform, from Numerical Recipes

DOUBLE PRECISIONWR,WI,WPR,WPI,WTEMP,THETA, TEMPR, TEMPI
DOUBLE PRECISION DATA(*)
INTEGER NN,ISIGN,N,J,I,M,MMAX,ISTEP
N=2*NN
J=1
DO 11 I=1,N,2
IF(J.GT.I)THEN
TEMPR=DATA(J)
TEMPI=DATA(J+1)
DATA(J)=DATA(I)
DATA(J+1)=DATA(I+1)
DATA(I)=TEMPR
DATA(I+1)=TEMPI
ENDIF
M=N/2
1 IF ((M.GE.2).AND.(J.GT.M)) THEN
J=J-M
M=M/2
GO TO 1
ENDIF
J=J+M
11 CONTINUE
MMAX=2
2 IF (N.GT.MMAX) THEN
ISTEP=2*MMAX
THETA=6.28318530717959D0/(ISIGN*MMAX)
WPR=-2.D0*DSIN(0.5D0*THETA)**2
WPI=DSIN(THETA)
WR=1.D0
WI=0.D0
DO 13 M=1,MMAX,2

Code 87

DO 12 I=M,N,ISTEP
J=I+MMAX
TEMPR=WR*DATA(J)-WI*DATA(J+1)
TEMPI=WR*DATA(J+1)+WI*DATA(J)
DATA(J)=DATA(I)-TEMPR
DATA(J+1)=DATA(I+1)-TEMPI
DATA(I)=DATA(I)+TEMPR
DATA(I+1)=DATA(I+1)+TEMPI
12 CONTINUE
WTEMP=WR
WR=WR*WPR-WI*WPI+WR
WI=WI*WPR+WTEMP*WPI+WI
13 CONTINUE
MMAX=ISTEP
GO TO 2
ENDIF
RETURN
END
cc
c Programmer: Eugene Tsiang c
c AXAF Mission Support Team c
c Date: 8/26/96 c
c Place: Smithsonian Astrophysical Observatory, Cambridge, MA c
c Spectral Analysis Program for XSPEC Revision 6.00 c
c Module name: jmkmod.f
c Modi¯cations
c 8/30/96 distinction between random and periodic pulsers
c routines ranpile and perpile replace pilesim
c 9/4/96 correction to periodic pulser
c modi¯ed 10/9/96, added synchrotron
c modi¯ed 10/25/96, corrected wrong normalization in periodic
c pulser
c eliminated dparam, ¯lnum 12/23/96, multiline capability
c added version control 12/23/96,
c corrected mistake in last virtual spectral bin (wrong index)
c version 6.4
c version 6.5 added ice ¯lter 12/30/96
c added HRMA parameters and abswitch 12/31/96
c increased number of ¯lters to 8 12/31/96, or any number
c implemented non-normalization of continuum for abswitch 1/2/97
c implemented HRMA e®ective area 1/6/97
c Version 7.0 released 1/6/97

88 Code

cc
10.0.11 subroutine jmkmod(ear, ne, param, worksp, photar)
Remark 11 Main JMKMOD subroutine called by XSPEC, passes parameters to
jmkply

real*4 param(*), ear(0:ne)
real*4 worksp(*), photar(ne), grit
integer*4 ne, i, intdummy
double precision contpdf(8192)
double complex mgfarr(8192)
integer numcomp, num¯lter, tally
integer maxcomp, max¯lter, intdum
parameter (maxcomp = 16, max¯lter = 16)
c increased number of components and ¯lters 12/23/96
double precision
1 jfano, jpolyah, jeo®, jionen, jgain, jshift, jsigma, jdgain,
2 jnchan, jsestype,
3 jcontinuum, jecont, jcontnorm, jemax, jemin, jechar, jewidth,
4 jnInt, jtemper, jpressure, jargrat,
5 jshelfswitch, jt1norm, jt1par, jt2norm, jt2par, jshelfnorm,
6 jpulser, jpulsepos, jpulsesigma, jpulsenorm,
7 jnumcomp, jnum¯lter, jpileup, jpilepar,
8 jb¯eld, jcurrent, jincline,
9 jabswitch, jphi, jtheta, jshell,
1 jlinenergy(maxcomp), jlinenorm(maxcomp),
2 jsrcstack(max¯lter), jsrcthick(max¯lter)
c singlelimit + 2*maxcomp + 2*max¯lter parameters 12/23/96 eyt
c passed to jmkply
* character*79 dummy
* write(dummy,800)ear(0),ear(ne),(param(i),i=1,5)
*800 format('JMmodel: ',1p,7g10.2)
*call xwrite(dummy,25)
c version control
character*96 dummy
real*4 version
version = 7.0
write(dummy, 800) version
800 format(' 1/6/96, JMKMOD version: ', f10.2)
c print *, dummy
call xwrite(dummy,11)
c uncomment this last statement within xspec
c now give them their assigned meanings and convert to dbl precision

Code 89

jfano = param(1)
jpolyah = param(2)
jeo® = param(3)
jionen = param(4)
jgain = param(5)
jshift = param(6)
jsigma = param(7)
jdgain = param(8)
jnchan = param(9)
jsestype = param(10)
jcontinuum = param(11)
jecont = param(12)
jcontnorm = param(13)
jemax = param(14)
jemin = param(15)
jechar = param(16)
jewidth = param(17)
jnInt = param(18)
jtemper = param(19)
jpressure = param(20)
jargrat = param(21)
jshelfswitch = param(22)
jt1norm = param(23)
jt1par = param(24)
jt2norm = param(25)
jt2par = param(26)
jshelfnorm = param(27)
jpulser = param(28)
jpulsepos = param(29)
jpulsesigma = param(30)
jpulseNorm = param(31)
jnumcomp = param(32)
jnum¯lter = param(33)
jpileup = param(34)
jpilepar = param(35)
jb¯eld = param(36)
jcurrent = param(37)
jincline = param(38)
jabswitch = param(39)
jphi = param(40)
jtheta = param(41)
jshell = param(42)

90 Code

numcomp = jnumcomp
tally = 42
c singlelimit must be changed in params.for AND here, 1/2/97
intdum = tally + numcomp
do 2000 i = 1, numcomp
jlinenergy(i) = param(tally +i)
jlinenorm(i) = param(intdum + i)
2000 continue
num¯lter = jnum¯lter
tally = tally + 2*numcomp
intdum = tally + num¯lter
do 3000 i = 1,num¯lter
jsrcstack(i) = param(tally + i)
jsrcthick(i) = param(intdum + i)
3000 continue
* print *, 'In jmkmod, jsrcstack = ', jsrcstack
* print *, 'In jmkmod, jsrcthick = ', jsrcthick
*
tally = tally + 2*num¯lter
* print *, 'In jmkmod, the total number of parameters is ', tally
call jmkply(contpdf, mgfarr,
1 jfano, jpolyah, jeo®, jionen, jgain, jshift, jsigma, jdgain,
2 jnchan, jsestype,
3 jcontinuum, jecont, jcontnorm, jemax, jemin, jechar, jewidth,
4 jnInt, jtemper, jpressure, jargrat,
5 jshelfswitch, jt1norm, jt1par, jt2norm, jt2par, jshelfnorm,
6 jpulser, jpulsepos, jpulsesigma, jpulsenorm,
7 jnumcomp, jnum¯lter, jpileup, jpilepar,
8 jb¯eld, jcurrent, jincline,
9 jabswitch, jphi, jtheta, jshell,
1 jlinenergy, jlinenorm, jsrcstack, jsrcthick)
GRIT = 1.d-8
** print *, 'In jmkmod, '
DO 10, I = 1, NE
INTDUMMY = 0.5*((EAR(I-1)+EAR(I))) + GRIT
PHOTAR(I) = contpdf(INTDUMMY)
** print *, intdummy, photar(i)
10 CONTINUE
c photar is the returned array, ear, ne, param are input
return
END

Code 91

10.0.12 subroutine jmkply(contpdf, mgfarr,
1 jfano, jpolyah, jeo®, jionen, jgain, jshift, jsigma, jdgain,

2 jnchan, jsestype,
3 jcontinuum, jecont, jcontnorm, jemax, jemin, jechar, jewidth,
4 jnInt, jtemper, jpressure, jargrat,
5 jshelfswitch, jt1norm, jt1par, jt2norm, jt2par, jshelfnorm,
6 jpulser, jpulsepos, jpulsesigma, jpulsenorm,
7 jnumcomp, jnum¯lter, jpileup, jpilepar,
8 jb¯eld, jcurrent, jincline,
9 jabswitch, jphi, jtheta, jshell,
1 jlinenergy, jlinenorm, jsrcstack, jsrcthick)

Remark 12 Takes parameters from jmkmod and generates continuum, calculates
mgfs, pileup and IFT

include 'params.for'
double precision contpdf(tChan)
double complex mgfarr(tChan)
double precision
1 jfano, jpolyah, jeo®, jionen, jgain, jshift, jsigma, jdgain,
2 jnchan, jsestype,
3 jcontinuum, jecont, jcontnorm, jemax, jemin, jechar, jewidth,
4 jnInt, jtemper, jpressure, jargrat,
5 jshelfswitch, jt1norm, jt1par, jt2norm, jt2par, jshelfnorm,
6 jpulser, jpulsepos, jpulsesigma, jpulsenorm,
7 jnumcomp, jnum¯lter, jpileup, jpilepar,
8 jb¯eld, jcurrent, jincline,
9 jabswitch, jphi, jtheta, jshell,
1 jlinenergy(*), jlinenorm(*), jsrcstack(*), jsrcthick(*)
c total of singlelimit + 2*maxcomp + 2*max¯lter parameters 10/17/96 eyt
c singlelimit = 42 12/31/96
double complex jmmgf, contply, dgjmgf, contdg,
1 binmgf, contexp, brshft
external jmmgf, contply, dgjmgf, contdg, binmgf, contexp, brshft
integer k, tally
fano = jfano
polyaH = jpolyah
eO® = jeO®
ionen = jionen
gain = jgain
shift = jshift
sigma = jsigma

92 Code

dgain = jdgain
nchan = jnchan
sestype = jsestype
continuum = jcontinuum
econt = jecont
contnorm = jcontnorm
emax = jemax
emin = jemin
echar = jechar
ewidth = jewidth
nInt = jnInt
temper = jtemper
pressure = jpressure
argrat = jargrat
shelfswitch = jshelfswitch
t1norm = jt1norm
t1par = jt1par
t2norm = jt2norm
t2par = jt2par
shelfnorm = jshelfnorm
pulser = jpulser
pulsepos = jpulsepos
pulsesigma = jpulsesigma
pulsenorm = jpulsenorm
numcomp = jnumcomp
num¯lter = jnum¯lter
pileup = jpileup
pilepar = jpilepar
b¯eld = jb¯eld
current = jcurrent
incline = jincline
abswitch = jabswitch
phi = jphi
theta = jtheta
shell = jshell
c strip parameters from call and put in common blocks
do 10 k = 1, numcomp
linenergy(k) = jlinenergy(k)
linenorm(k) = jlinenorm(k)
10 continue
do 20 k = 1, num¯lter
srcstack(k) = jsrcstack(k)

Code 93

srcthick(k) = jsrcthick(k)
20 continue
c end source stack
tChan = nChan*2
tChan1 = tChan + two
nInt1 = nInt - 1
deltaE = 1.d0
piDelt = dcmplx(0.d0, - mypi/(dble(nChan)*deltaE))
dEmax = (eMax - eMin)/ nInt1
if (eMax.ne.eMaxOld.or.
1eMin.ne.eMin.or.
2 dEmax.ne.dEmaxOld) then
ener°ag = 1
c this means that some energy parameters have changed
eMaxOld = eMax
eMinOld = eMin
dEmaxOld = dEmax
do 200 k = 1, nInt
eArray(k) = eMin + dEmax*(k - 1)
evArr(k) = 1000.*eArray(k)
200 continue
else
ener°ag = 0
c this means that no energy parameters have changed
endif
tally = singlelimit + 2*numcomp + 2*num¯lter
* print *, 'In jmkply, the total number of parameters is ', tally
*
* print *, 'In jmkply',
* 1' fano = ', fano, ' polyaH = ', polyah, ' eo® = ', eo®,
* 2' ionEn = ', ionEn, ' gain = ', gain, ' shift = ', shift,
* 3' sigma = ', sigma, ' dgain = ', dgain, ' nchan = ', nchan,
* 4' sestype = ', sestype, ' continuum = ', continuum,
* 5' cont = ', econt, ' emax = ', emax, ' emin = ', emin,
* 6' echar = ', echar, ' ewidth = ', ewidth, ' nInt = ', nInt,
* 7' temperature = ', temper, 'pressure = ', pressure,
* 8' argon ratio = ', argrat, ' shelfswitch = ', shelfswitch,
* 9' t1norm = ', t1norm, ' t1par = ', t1par, ' t2norm = ', t2norm,
* 1' t2par = ', t2par, ' shelfnorm = ', shelfnorm,
* 2' pulser = ',pulser, ' pulsepos = ', pulsepos,
* 3' pulsesigma = ',pulsesigma,
* 4' number of components = ',numcomp,

94 Code

* 5' num¯lter = ', num¯lter, ' pileup = ', pileup,
* 6' pilepar = ', pilepar, ' line energies = ', linenergy,
* 7' linenorm = ', linenorm, ' ¯lter stack = ', srcstack,
* 8' ¯lter thicknesses = ', srcthick,
* 9' b¯eld = ', b¯eld, 'current = ', current,
* 1' incline = ', incline, ' abswitch = ', abswitch,
* 2' phi = ', phi, ' theta = ', theta, ' shell = ', shell
* print *, 'In jmkply, auxiliaries: ', ' tChan = ', tChan,
* 1 ' tChan1 = ', tChan1, ' nInt1 = ', nInt1,' deltaE = ',deltaE,
* 2 ' piDelt = ', piDelt, ' dEmax = ', dEmax
*
** print *, 'eArray in jmkply '
** do 260 k = 1, nInt
** print *, eArray(k), ' ', evArr(k)
** 260 continue
if (continuum.ne.0) call damper
c damper returns an array 'alldamp(nInt)' containing the
c action of all the sources(¯lters)
c single electron spectral type sestype selected:
if (sestype.eq.2) then
call mgfmake(binmgf, contexp, mgfarr)
else if (sestype.eq.3) then
call mgfmake(dgjmgf, contdg, mgfarr)
else
call mgfmake(jmmgf, contply, mgfarr)
c this is the default (sestype.eq.1)
endif
c pileup if any is performed within mgfmake 8/30/96
** print *, 'pileup parameter in jmkply ', pileup, pilepar
call invert(mgfarr, contpdf)
c jmpdf(tChan) returned by Fourier inverting mgfarr(tChan)
** print *, 'In jmkply '
** do 2000 k = 1,tChan
** print *, contpdf(k), mgfarr(k)
** 2000 continue
return
end

10.0.13 subroutine ranpile(mgfarr)
Remark 13 Random pulser pileup routine

c for random pulsers
include 'params.for'

Code 95

double complex mgfarr(tChan)
integer i
double precision someval, cpilepar, normsum
double complex mgfdum
if (pilepar.eq.one) return
if (pilepar.eq.0.0) then
c almost never happens, because this implies unlimited pileup
do 800 i = 1,tChan
mgfarr(i) = (0.0,0.0)
800 continue
return
endif
normsum = mgfarr(1)
cpilepar = one - pilepar
someval = cpilepar/normsum
do 400 i = 1, tChan
mgfdum = mgfarr(i)
mgfarr(i) = pilepar*mgfdum/(one - someval*mgfdum)
400 continue
return
end

10.0.14 subroutine perpile(mgfarr, pulsarr)
Remark 14 Periodic pulser pileup routine

c for periodic pulsers, mgfarr not normalized
include 'params.for'
double complex mgfarr(tChan), pulsarr(tChan)
integer i
double precision someval, cpilepar, normsum
double complex mgfdum
if (pilepar.eq.one) return
if (pilepar.eq.0.0) then
c almost never happens, because this implies unlimited pileup
do 800 i = 1, tChan
mgfarr(i) = (0.0, 0.0)
800 continue
return
endif
normsum = mgfarr(1)
cpilepar = one - pilepar
someval = cpilepar/normsum
do 400 i = 1, tChan

96 Code

mgfdum = mgfarr(i)
mgfarr(i) = pilepar*(pulsarr(i) + mgfdum)/
1 (one - someval*mgfdum)
400 continue
return
end

10.0.15 subroutine mgfmake(linemgf, contmgf, mgfarr)
Remark 15 Generates total mgf from line, pulser and continuum mgfs, adjusts for
pileup.

double complex linemgf, contmgf, brshft
external linemgf, contmgf, brshft
include 'params.for'
double precision oldenergy, oldshift, oldsigma
integer j, k, dumbcomp
double complex dumbarr(8192), lcparr(8192,32)
c make sure these arrays are large enough to hold components
double complex mgfarr(tChan)
double complex dumbtemp, sum
** double precision dumbpdf(8192)
c numcomp is the number of line components
oldenergy = eChar
c oldenergy saves the current of eChar, while eChar
c is being \borrowed\
do 650 k = 1, numcomp
eChar = linenergy(k)
call mgftbl(linemgf,dumbarr)
** call invert(dumbarr, dumbpdf)
do 660 j = 1, tChan
lcparr(j,k) = dumbarr(j)
** print *, dumbpdf(j), dumbarr(j)
660 continue
650 continue
dumbcomp = numcomp
c this equates dumbcomp to the number of line components
eChar = oldenergy
c this restores eChar back to its original value
if (continuum.ne.0) then
call mgftbl(contmgf, dumbarr)
dumbcomp = dumbcomp+1
dumbtemp = dumbarr(1)
c normalization constant for continuum

Code 97

if (abswitch.eq.0) then
c abswitch.eq.0 (relative calibration)
do 670 j = 1, tChan
dumbarr(j) = dumbarr(j)/dumbtemp
lcparr(j,dumbcomp) = dumbarr(j)
670 continue
c case of relative calibration where just the counts matter
else
c abswitch.ne.0 (absolute calibration)
do 780 j = 1, tChan
lcparr(j,dumbcomp) = dumbarr(j)
780 continue
c no normalization for absolute calibration 1/2/97
endif
** call invert(dumbarr, dumbpdf)
** print *,'In mgfmake, the cont pdf/mgf is '
** do 770 j = 1, tChan
** print *, dumbpdf(j), dumbarr(j)
** 770 continue
linenorm(dumbcomp) = contnorm
c \borrowing\ linenorm for the continuum
endif
c at this point, dumbcomp is the number of lines and continuum,
c if any
c by convention
c pulser>0, periodic pulser
c pulser = 0, no pulser
c pulser<0, random pulser
if (pulser.ne.0) then
c there is a pulser
oldshift = shift
oldsigma = sigma
shift = pulsepos
sigma = pulsesigma
call mgftbl(brshft, dumbarr)
c the pulser is a shifted gaussian
** call invert(dumbarr, dumbpdf)
** print *, 'In mgfmake, the pulser/pdf/mgf is '
dumbcomp = dumbcomp+1
do 680 j = 1, tChan
lcparr(j,dumbcomp) = dumbarr(j)
** print *, dumbpdf(j), dumbarr(j)

98 Code

680 continue
shift = oldshift
sigma = oldsigma
linenorm(dumbcomp) = pulsenorm
endif
c at this point, dumbcomp is the number of lines and continuum
c and pulser, if any
c correction added 10/25/96 due to wrong normalization for
c periodic pulser
if (pileup.ne.0.and.pulser.gt.0) then
do 840 j = 1, tChan
dumbarr(j) = linenorm(dumbcomp)*lcparr(j,dumbcomp)
840 continue
dumbcomp = dumbcomp - 1
endif
c this is the case of pileup with a periodic pulser
c dumbcomp is lowered by 1 to exclude the pulser, which is last
do 700 j = 1, tChan
sum = 0.0
do 750 k = 1, dumbcomp
sum = sum + linenorm(k)*lcparr(j,k)
750 continue
mgfarr(j) = sum
700 continue
if (pileup.eq.0) then
return
c the case of NO pileup, NO further processing of mgfarr
c the remaining cases have pileup
else if (pulser.gt.0) then
c the case of a periodic pulser with pileup
call perpile(mgfarr, dumbarr)
c dumbarr is just lcparr(j,dumbcomp+1)*linenorm(dumbcomp+1),
c the mgf of the pulser. Remember that dumbcomp has been set
c to dumbcomp-1, one less because of pulser
else
c this includes the general cases of random pulser and no pulser
c pulser.le.0
call ranpile(mgfarr)
endif
return
end
cc

Code 99

c Programmer: Eugene Tsiang c
c AXAF Mission Support Team c
c Date: 8/26/96 c
c Place: Smithsonian Astrophysical Observatory, Cambridge, MA c
c Spectral Analysis Program for XSPEC Revision 6.00 c
c Module name: jmmgf1.f
c Modi¯cations:
c 9/4/96 tail parameters changed using logs to prevent instability
c10/31/96 previous tail parameters implementation corrected
c 11/4/96 NaN in xspec caused by tail parameters over°owing
c cured by taking inverse and causing under°owing
cc

10.0.16 double complex function jmmgf(slap)
Remark 16 Mgf with SES type 1 mgf, with Laplace parameter `slap'

c moment generating function for a line
include 'params.for'
double complex slap, sglmgf, sglshelf, plymgf, brshft
external plymgf
if (shelfswitch.eq.0) then
jmmgf = sglmgf(slap,plymgf)*brshft(slap)*plymgf(slap)
else
jmmgf = sglshelf(slap,plymgf)*brshft(slap)*plymgf(slap)
* jmmgf = sglmgf(slap,plymgf)
endif
return
end

10.0.17 double complex function dgjmgf(slap)
Remark 17 Mgf with SES type 3 mgf.

c moment generating function for a line
include 'params.for'
c make sure this is changed to 'params.f' in xspec
* include 'params.f'
double complex slap, sglmgf, sglshelf, dgmgf, brshft
external dgmgf
if (shelfswitch.eq.0) then
dgjmgf = sglmgf(slap, dgmgf)*brshft(slap)*dgmgf(slap)
else
dgjmgf = sglshelf(slap, dgmgf)*brshft(slap)*dgmgf(slap)
* dgjmgf = sglmgf(slap, dgmgf)
endif

100 Code

return
end

10.0.18 double complex function binmgf(slap)
Remark 18 Mgf with SES type 2 Mgf

c moment generating function for a line
include 'params.for'
double complex slap, sglmgf, sglshelf, expmgf, brshft
external expmgf
if (shelfswitch.eq.0) then
binmgf = sglmgf(slap, expmgf)*brshft(slap)*expmgf(slap)
* binmgf = sglmgf(slap, expmgf)
else
binmgf = sglshelf(slap, expmgf)*brshft(slap)*expmgf(slap)
endif
return
end

10.0.19 double complex function plymgf(slap)
Remark 19 SES type 1 mgf: Polya distribution

c single electron spectral types
include 'params.for'
double complex slap
plymgf = (one/(one + gain*slap/polyaH))**polyaH
return
end
double complex function expmgf(slap)
c case when polyaH goes to in¯nity { mgf for delta function ses
include 'params.for'
double complex slap
expmgf = exp(-gain*slap)
return
end

10.0.20 double complex function dgmgf(slap)
Remark 20 SES type 3 mgf: delta function

c case when gain varies between gain - dgain and gain + dgain
include 'params.for'
double complex slap
double complex temp, temp1, temp2
if (slap.eq.(0.0,0.0)) then

Code 101

dgmgf = (1.0,0.0)
return
endif
if (dgain.gt.pebble) then
if (abs(polyaH - one).gt.pebble) then
temp1 = polyaH + (gain - dgain)*slap
temp2 = polyaH + (gain + dgain)*slap
temp = temp1/(temp1/polyaH)**polyaH -
1 temp2/(temp2/polyaH)**polyaH
dgmgf = temp/(2.*dgain*slap*(polyaH-one))
return
else
temp1 = one + (gain - dgain)*slap
temp2 = one + (gain + dgain)*slap
dgmgf = log(temp2/temp1)/(2.*dgain*slap)
return
endif
else
dgmgf = (one/(one + gain*slap/polyaH))**polyaH
return
endif
end

10.0.21 double complex function sglmgf(slap, sesmgf)
Remark 21 MGF with SES type 1 mgf without broadening and extra electron

c mgf for a line without broadening and extra electron
include 'params.for'
double complex slap, sesmgf
double precision pFano, nPhot
double complex temp
c local variables
** print *, 'slap in sglmgf = ', slap
pFano = one - fano
nPhot = (eChar - eO®)/ionEn
temp = sesmgf(slap)
c channel shift and broadening
if (abs(pFano) .gt. pebble) then
sglmgf = (one + pFano*(temp - one))**(nPhot/pFano)
c general jm case
else
sglmgf = exp((temp - one)*nPhot)
c jm-Prescott intermediate case (Fano factor = 1)

102 Code

endif
return
end

10.0.22 double complex function sglshelf(slap, sesmgf)
Remark 22 Shelf mgf

c mgf for a line without broadening and extra electron
include 'params.for'
double complex slap, sesmgf
double precision pFano, nPhot
double complex temp, temp1, temp6, temp7, temp0
double precision nupper, temp2, temp3, temp4, temp5
double complex shelfpart, tpart1, tpart2
c local variables
** print *, 'slap in sglshelf = ', slap
pFano = one - fano
nPhot = (eChar - eO®)/ionEn
temp = sesmgf(slap)
if (temp.eq.(1.0,0.0)) then
sglshelf = (1.0,0.0)
return
endif
c this point evaluated separately because of mild apparent
c singularities
if (abs(pFano) .gt. pebble) then
temp1 = fano + pFano*temp
temp7 = - log(temp1)
nupper = nPhot/pFano
temp6 = temp1**nupper
temp0 = (one + pFano*(temp - one))**nupper
c the JM case for a line is temp0
if (shelfnorm.ne.0.0)
1 shelfpart = (pFano*(one - temp6))/(nPhot*temp7)
if (t1norm.ne.0.0) then
temp2 = t1par**nPhot
temp3 = pFano*log(t1par)
if (temp2.gt.one) then
temp2 = one/temp2
c taking reciprocal averts over°ow problem 11/4/96
tpart1 = (temp6 - temp2)/
1 ((one - temp2)*(one - temp7/temp3))
else

Code 103

tpart1 = (temp2*temp6 - one)/
1 ((temp2 - one)*(one - temp7/temp3))
endif
endif
if (t2norm.ne.0.0) then
temp4 = t2par**nPhot
temp5 = pFano*log(t2par)
if (temp4.gt.one) then
temp4 = one/temp4
c taking reciprocal averts over°ow problem 11/4/96
tpart2 = (temp6 - temp4)/
1 ((one - temp4)*(one - temp7/temp5))
else
tpart2 = (temp4*temp6 - one)/
1 ((temp4 - one)*(one - temp7/temp5))
endif
endif
c general jm case
else
temp0 = exp(nPhot*(temp - one))
c the Prescott case for the line is temp0
if (shelfnorm.ne.0.0)
1 shelfpart = (temp0 - one)/((temp - one)*nPhot)
if (t1norm.ne.0.) then
temp2 = t1par**nPhot
tpart1 = (- one + temp2*temp0)/
1 ((temp2 - one)*(one + (temp - one)/log(t1par)))
endif
if (t2norm.ne.0.) then
temp4 = t2par**nPhot
tpart2 = (- one + temp4*temp0)/
1 ((temp4 - one)*(one + (temp - one)/log(t2par)))
endif
c jm-Prescott intermediate case (Fano factor = 1)
endif
* print *, \Within jmmgf1, fano, pFano,
* 1 slap, temp, temp0, temp1, temp2, temp3, temp4, temp5,
* 2 temp6, nPhot, tpart1, tpart2, shelfpart, t1norm, t2norm,
* 3 shelfnorm = \, fano, pFano,
* 4 slap, temp, temp0, temp1, temp2, temp3, temp4, temp5,
* 5 temp6, nPhot, tpart1, tpart2, shelfpart, t1norm, t2norm,
* 6 shelfnorm

104 Code

sglshelf = (temp0 +
1 t1norm*tpart1 + t2norm*tpart2 + shelfnorm*shelfpart)/
2 (one + t1norm + t2norm + shelfnorm)
c sglshelf includes the line, the shelf, and two tails
return
end

10.0.23 double complex function brshft(slap)
Remark 23 Broadening and shift mgfs

c shifting and broadening mgf
include 'params.for'
double complex slap
if (slap.eq.(0.0,0.0)) then
brshft = (1.0,0.0)
return
endif
if (shift.eq.0.0.and.sigma.eq.0.0) then
brshft = one
return
elseif (shift.eq.0.0) then
brshft = exp(half*(slap*sigma)**2)
return
elseif (sigma.eq.0.0) then
brshft = exp(-slap*shift)
return
else
brshft = exp(-slap*shift + half*(slap*sigma)**2)
return
endif
end
cc
c Programmer: Eugene Tsiang c
c AXAF Mission Support Team c
c Date: 8/26/96 c
c Place: Smithsonian Astrophysical Observatory, Cambridge, MA c
c Spectral Analysis Program for XSPEC Revision 6.00 c
c Module name: kramer.f
cc

10.0.24 double complex function contply(slap)
Remark 24 Broadening and shift and extra electron applied to continuum mgf: SES
type 1

Code 105

include 'params.for'
c make sure this is changed to 'params.f' in xspec
* include 'params.f'
double complex slap, plymgf, ctmmgf, brshft
external plymgf
** print *, 'slap in contply = ',slap
** contply = ctmmgf(slap, plymgf)
contply = ctmmgf(slap, plymgf)*brshft(slap)*plymgf(slap)
** print *, 'slap back in contply = ', slap
return
end

10.0.25 double complex function contexp(slap)
Remark 25 Broadening and shift and extra electron applied to continuum mgf: SES
type 2

include 'params.for'
c make sure this is changed to 'params.f' in xspec
* include 'params.f'
double complex slap, expmgf, ctmmgf, brshft
external expmgf
** print *, 'slap in contexp = ', slap
** contexp = ctmmgf(slap, expmgf)
contexp = ctmmgf(slap, expmgf)*brshft(slap)*expmgf(slap)
** print *, 'slap back in contexp = ', slap
return
end

10.0.26 double complex function contdg(slap)
Remark 26 Broadening and shift and extra electron applied to continuum mgf: SES
type 3

include 'params.for'
c make sure this is changed to 'params.f' in xspec
* include 'params.f'
double complex slap, dgmgf, ctmmgf, brshft
external dgmgf
** print *, 'slap in contdg = ', slap
** contdg = ctmmgf(slap, dgmgf)
contdg = ctmmgf(slap, dgmgf)*brshft(slap)*dgmgf(slap)
** print *, 'slap back in contdg = ', slap
return
end
cc

106 Code

c Programmer: Eugene Tsiang c
c AXAF Mission Support Team c
c Date: 8/26/96 c
c Place: Smithsonian Astrophysical Observatory, Cambridge, MA c
c Spectral Analysis Program for XSPEC Revision 6.00 c
c Module name: matnu.f
c added ice ¯lter, lengthened data, mu and arr arrays 12/30/96
cc

10.0.27 subroutine newmac(kElem, extinct)
Remark 27 Henke Tables reader

include 'params.for'
integer kElem
* double precision eo®, emax, demax
*double precision keV
integer best
* integer nInt
double precision mubest, arrbest
* integer best1
double precision data(maxhenke,3),mu(maxhenke),arr(maxhenke)
c maxhenke = 1024, should be enough 12/30/96, old array too small
c these are arrays associated with the Henke Tables
c arr is the energy array
c mu is the extinction array calculated from Henke
double precision extinct(nInt), aw
c extinct is the interpolated extinction array
character*2 el
character*1 el1
character*50 henke, header
character*44 temp
integer i, n, nhenke
temp = '/home/saolib/optical constants/henke ext 95/'
aw = elemWate(kElem)
el = elemName(kElem)
if (el(2:2).eq.' ') then
el1 = el(1:1)
henke = temp//el1//'.n®'
else
henke = temp//el//'.n®'
endif
* print *, 'In newmac, kElem, aw, el, el1 = ',
* 1 kElem, aw, el, el1

Code 107

* print *, 'In newmac, reading ', henke
* call xwrite('jmkram: reading ¯le '//henke,25)
open(unit =1,¯le = henke)
read(1,*) header
i=0
20 continue
i=i+1
read (1,*, end = 30) data(i,1), data(i,2), data(i,3)
goto 20
30 continue
n=i-1
close(1)
*print *, 'data read in'
nhenke = n
do 40 i=1,n
mu(i) = 4.208d7*data(i,3)/data(i,1)/aw
40 continue
*print *, 'mu = '
*print *, mu
*print *, 'n = ', n
*print *, 'In matnew.f, arr = '
do 50 i=1,n
arr(i)=data(i,1)
* print *, i, data(i,1), data(i,2), data(i,3),mu(i)
50 continue
* eo® = 0.00
* emax = 10.
* nInt = 512
* demax = (emax - eo®)/(nInt - 1)
* keV = 1000.
* print *, ' energy array = '
* do 650 i = 1, nInt
evArr(i) = keV(eo® + (i - 1)*demax)
* print *, i, evArr(i)
* 650 continue
best = 1
* best1 = 2
* print *, \In newmac, i, evArr, arrbest, best, mubest, extinct\
do 660 i = 1, nInt
* call locate(arr, n, evArr(i), best1)
call hunt(arr, n, evArr(i), best)
if (nhenke.gt.best.and.best.gt.0) then

108 Code

mubest = mu(best)
arrbest = arr(best)
extinct(i) = mubest + (mu(best+1)-mubest)*
1 (evArr(i) - arrbest)/(arr(best+1)- arrbest)
else if (best.le.0) then
extinct(i) = 999999999.
arrbest = evArr(i)
mubest = extinct(i)
else
mubest = mu(best)
arrbest = arr(best)
extinct(i) = mubest
endif
* print *, i, evArr(i), arrbest, best, mubest ,extinct(i)
660 continue
return
end

10.0.28 SUBROUTINE hunt(xx,n,x,jlo)
Remark 28 Interpolation routine: hunting for value, from Numerical Recipes

INTEGER jlo,n
double precision x,xx(n)
INTEGER inc,jhi,jm
LOGICAL ascnd
ascnd=xx(n).gt.xx(1)
if(jlo.le.0.or.jlo.gt.n)then
jlo=0
jhi=n+1
goto 3
endif
inc=1
if(x.ge.xx(jlo).eqv.ascnd)then
1 jhi=jlo+inc
if(jhi.gt.n)then
jhi=n+1
else if(x.ge.xx(jhi).eqv.ascnd)then
jlo=jhi
inc=inc+inc
goto 1
endif
else
jhi=jlo

Code 109

2 jlo=jhi-inc
if(jlo.lt.1)then
jlo=0
else if(x.lt.xx(jlo).eqv.ascnd)then
jhi=jlo
inc=inc+inc
goto 2
endif
endif
3 if(jhi-jlo.eq.1)return
jm=(jhi+jlo)/2
if(x.gt.xx(jm).eqv.ascnd)then
jlo=jm
else
jhi=jm
endif
goto 3
END
C (C) Copr. 1986-92 Numerical Recipes Software 4p='.

SUBROUTINE locate(xx,n,x,j)
Remark 29 Locating a value during interpolation, due to Numerical Recipes

INTEGER j,n
double precision x,xx(n)
INTEGER jl,jm,ju
* integer i
* print *, 'In locate , n = ', n
* print *, 'In locate , j = ', j
* print *, 'In locate, x = ', x
* print *, 'In locate , xx = '
* do 60 i = 1,n
* print *, i, xx(i)
* 60 continue
jl=0
ju=n+1
10 if(ju-jl.gt.1)then
jm=(ju+jl)/2
if((xx(n).gt.xx(1)).eqv.(x.gt.xx(jm)))then
jl=jm
else
ju=jm

110 Code

endif
goto 10
endif
j=jl
return
END
C (C) Copr. 1986-92 Numerical Recipes Software 4p='.
cc
c Programmer: Eugene Tsiang c
c AXAF Mission Support Team c
c Date: 8/26/96 c
c Place: Smithsonian Astrophysical Observatory, Cambridge, MA c
c Spectral Analysis Program for XSPEC Revision 6.00 c
c Module name: mgftbl.f
cc

10.0.29 subroutine mgftbl(stunt,mgfarr)
Remark 30 Generates a table of moment generating functions at a particular s.

c mgf table generator prior to inverse FFT
include 'params.for'
c make sure this is changed to 'params.f' in xspec
* include 'params.f'
integer k
double complex stunt, mgfarr(tChan), piK
external stunt
** print *, 'deltaE in mgftbl = ', deltaE
** print *, 'nChan in mgftbl =', nChan
** print *, 'tChan in mgftbl =', tChan
** print *, 'tChan1 in mgftbl = ', tChan1
** print *, 'piDelt in mgftbl = ', piDelt
** print *, 'emax in mgftbl = ', emax
mgfarr(1) = stunt(dcmplx(0,0))
do 100 k = 2, nChan
piK = dble(k-1)*piDelt
mgfarr(k) = stunt(piK)
* print *, 'back in mgftbl , piK = ', piK
mgfarr(tChan1 - k) = dconjg(mgfarr(k))
100 continue
mgfarr(nChan + 1) = dreal(stunt(dble(nChan)*piDelt))
** print *, 'mgfarr in mgftbl = ', mgfarr
return
end

Code 111

cc
c Programmer: Eugene Tsiang c
c AXAF Mission Support Team c
c Date: 1/6/97 c
c Place: Smithsonian Astrophysical Observatory, Cambridge, MA c
c Spectral Analysis Program for XSPEC Revision 7.00 c
c Module name: mirror.f
cc

10.0.30 subroutine mirror(damping)
Remark 31 Goes to a HRMA e®ective area ¯le and reads in the values, a la Henke
Table.

include 'params.for'
integer iphi, itheta
double precision resphi, restheta
character*6 phiasc, thetasc
character*4 shellasc
character*48 temp
character*70 ¯lename
double precision data(maxhenke,2), mu(maxhenke), arr(maxhenke)
integer i, nrecords, best
c maxhenke = 1024
c arr is the energy array
c mu is the mirror re°ectivity array
double precision damping(nInt), mubest, arrbest
c damping is the interpolated dampingion array
iphi = phi
itheta = theta
resphi = phi - iphi
restheta = theta - itheta
temp = '/data/axafj/dj/axaf/cal-hdbk/v4/saohdos3/rdb/eaf'
open(unit = 10, ¯le = 'board.dat')
write (10,14) iphi,resphi,itheta, restheta, shell
14 format(i3.3,f3.2,i3.3,f3.2,i4.4)
rewind (10)
read(10,15) phiasc, thetasc, shellasc
15 format(2a6,a4)
* print*, 'phiasc = ', phiasc, ', thetasc = ', thetasc
¯lename = temp//phiasc//'t'//thetasc//'s'//shellasc//'.rdb'
* print *, '¯lename ' , ¯lename
close(10)
c business end

112 Code

open (unit = 11, ¯le = ¯lename)
i = 0
20 continue
i = i + 1
read(11, *, end = 30) data(i,1), data(i,2)
goto 20
30 continue
nrecords = i - 1
* print *, ' number of records read is ', nrecords
* print *, 'data '
* do 40 i = 1,nrecords
* print *, i, data(i,1), data(i,2)
* 40 continue
* print *, 'arr and mu = '
do 500 i = 1, nrecords
arr(i) = data(i,1)
mu(i) = data(i,2)
* print *, arr(i), mu(i)
500 continue
best = 1
* print *, 'Within mirror'
do 800 i = 1, nInt
call hunt(arr, nrecords, evArr(i), best)
if (nrecords.gt.best.and.best.gt.0) then
mubest = mu(best)
arrbest = arr(best)
damping(i) = mubest + (mu(best+1)-mubest)*
1 (evArr(i) - arrbest)/(arr(best+1)- arrbest)
else if (best.le.0) then
damping(i) = 0.
* arrbest = evArr(i)
* mubest = damping(i)
else
* mubest = mu(best)
* arrbest = arr(best)
* damping(i) = mubest
damping(i) = mu(best)
endif
* print *, i, evArr(i), damping(i)
800 continue
close(11)
return

Code 113

end
10.0.31 SUBROUTINE qsimp(func,a,b,s)
Remark 32 Simpson's Rule of integration, from Numerical Recipes

INTEGER JMAX
REAL a,b,func,s,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAX=20)
CU USES trapzd
INTEGER j
REAL os,ost,st
ost=-1.e30
os= -1.e30
do 11 j=1,JMAX
call trapzd(func,a,b,st,j)
s=(4.*st-ost)/3.
if (abs(s-os).lt.EPS*abs(os)) return
os=s
ost=st
11 continue
pause 'too many steps in qsimp'
END
C (C) Copr. 1986-92 Numerical Recipes Software %5'KNp='.

10.0.32 SUBROUTINE qtrap(func,a,b,s)
Remark 33 Trapezoidal integration, from Numerical Recipes

INTEGER JMAX
REAL a,b,func,s,EPS
EXTERNAL func
PARAMETER (EPS=1.e-6, JMAX=20)
CU USES trapzd
INTEGER j
REAL olds
olds=-1.e30
do 11 j=1,JMAX
call trapzd(func,a,b,s,j)
if (abs(s-olds).lt.EPS*abs(olds)) return
olds=s
11 continue
pause 'too many steps in qtrap'
END
C (C) Copr. 1986-92 Numerical Recipes Software %5'KNp='.

114 Code

cc
cProgrammer: Eugene Tsiang c
cAXAF Mission Support Team c
cDate: 8/26/96 c
cPlace: Smithsonian Astrophysical Observatory, Cambridge, MA c
c Spectral Analysis Program for XSPEC Revision 6.00 c
cModule name: source.f c
cModi¯cations:
c 9/11/96 Added Mn and polypro
c 9/16/96 Checked shelves, found error in Ge dens in ssdgerm
c 9/17/96 Changed P10 and CH4 using right formulae
c10/9/96 emax to eCont
c 12/30/96 added ice ¯lter
cc

10.0.33 subroutine damper
Remark 34 Calculates the total e®ect of a stack of source/¯lters

c this subroutine returns values in the array alldamp(integral) in
c the common array \¯lstack\
include 'params.for'
double precision dummy, dumdamp(integral)
integer j, k
integer kElem
double precision hold
* print *, \In damper, number ¯lter, kElem, thick \
do 800 k = 1, num¯lter
kElem = srcstack(k)
hold = srcthick(k)
* print *, k, kElem, hold
call source(kElem, hold, dumdamp)
c call source(scrstack(k),scrthick(k), dumdamp)
do 900 j = 1, nInt
srcdamp(j,k) = dumdamp(j)
c print *, k, j, srcdamp(j,k), dumdamp(j)
900 continue
800 continue
do 1000 j = 1, nInt
dummy = one
do 1100 k = 1, num¯lter
dummy = dummy*srcdamp(j,k)
1100 continue
alldamp(j) = dummy

Code 115

1000 continue
* 31 format(i8, ' ', g16.8e4,' ',g16.8e4,' ',g16.8e4,' ',g16.8e4,' ',
* 1 g16.8e4,' ', g16.8e4,' ', g16.8e4,' ', g16.8e4,' ',g16.8e4,
* 2 ' ',g16.8e4)
* open(30,¯le = 'damping.dat', form = 'formatted')
*
* do 2000 j = 1, nInt
* write(30,31) j, eArray(j),alldamp(j),srcdamp(j,1),
* 1 srcdamp(j,2),
* 2 srcdamp(j,3),srcdamp(j,4),srcdamp(j,5), srcdamp(j,6),
* 3 srcdamp(j,7), srcdamp(j,8)
* 2000 continue
*
* close(30)
return
end

10.0.34 subroutine krasub(damping)
Remark 35 Kramers source ¯lter

include 'params.for'
c Make sure this is 'params.f' in xspec!
* include 'params.f'
double precision damping(nInt)
integer i
do 10 i=1,nInt
if (eArray(i) .eq. 0) then
damping(i)=0.0
else
damping(i) = (eCont/eArray(I) -one)
c eMax changed to Econt 10/9/96
endif
10 continue
** print *, 'In krasub, eMax is ', eMax
** print *, 'In krasub, damping is ', damping
return
end

10.0.35 subroutine linegauss(damping)
Remark 36 Gaussian source/¯lter

include 'params.for'
double precision damping(nInt), eWid2, rootpi
integer i

116 Code

eWid2 = eWidth*eWidth
rootpi = one/(eWidth*sqrt(two*mypi))
do 450 i = 1, nInt
damping(i) = rootpi*
1 exp(-(eArray(i) - eChar)**2/(two*eWidth*eWidth))
450 continue
** print *, 'In linegauss, damping is ', damping
return
end

10.0.36 subroutine source(kElem, thick, damping)
Remark 37 Calculates the transmission/absorption values for a ¯lter corresponding
to `kElem'

include 'params.for'
integer kElem
double precision thick, damping(nInt)
double precision muabs1(integral), muabs2(integral),
1 muabs3(integral), muabs4(integral)
double precision muabs(integral)
double precision stoich(4)
double precision elempith, cargrat, normal
integer i
c special nonelements:
c 'p1' is parylene
c 'p2' is polyimide
c 'p3' is mylar (density wrong)
c 'p4' is te°on (polytetra°uoroethylene, density wrong)
c 'p5' is pn (ammonium dihydrogen phosphate, density wrong)
c 'p6' is pvc (polyvinyl chloride, density wrong)
c 'p7' is polypropylene
c 'ks' is the kramers continuum
c 'sy' is the synchrotron radiation spectrum
c 'gx' is the germanium quantum e±ciency
c 'ax' is the fpc p10 quantum e±ciency
c 'mx' is the fpc methane quantum e±ciency
c 'ea' is the e®ective area of the mirror
c 'gn' is the gaussian
c 'px' is the pella continuum
c 'un' is the all-pass (unity) ¯lter
if (kElem.eq.parylene) then
elempith = elemDens(kElem)*thick
stoich(1) = 5.98306d-1

Code 117

stoich(2) = 4.01694d-1
call newmac(cplace, muabs1)
call newmac(hplace, muabs2)
** print *, 'In parylene in source, thick, elempith =',
** 1thick, elempith
do 100 i = 1,nInt
muabs(i) = muabs1(i)*stoich(1) + muabs2(i)*stoich(2)
damping(i) = exp(-muabs(i)*elempith)
** print *, i, damping(i),muabs(i), muabs1(i), muabs2(i)
100 continue
** print *, 'In parylene in source, damping = '
** do 120 i = 1, nInt
** print *, damping(i)
** 120 continue
c stoichiometry of parylene
elseif (kElem.eq.polyimide) then
elempith = elemDens(kElem)*thick
call newmac(cplace, muabs1)
call newmac(hplace, muabs2)
call newmac(oplace, muabs3)
call newmac(nplace, muabs4)
stoich(1) = 22.0*elemWate(cplace)
stoich(2) = 10.0*elemWate(hplace)
stoich(3) = 4.0*elemWate(oplace)
stoich(4) = 2.0*elemWate(nplace)
normal = stoich(1) + stoich(2) + stoich(3) + stoich(4)
do 200 i = 1, nInt
muabs(i) = (stoich(1)*muabs1(i) + stoich(2)*muabs2(i) +
1 stoich(3)*muabs3(i) + stoich(4)*muabs4(i))/
2 normal
damping(i) = exp(-muabs(i)*elempith)
200 continue
c stoichiometry of polyimide: C22 H10 O4 N2
elseif (kElem.eq.polypro) then
elempith = elemDens(kElem)*thick
call newmac(cplace, muabs1)
call newmac(hplace, muabs2)
stoich(1) = elemWate(cplace)
stoich(2) = 2.0*elemWate(hplace)
normal = stoich(1) + stoich(2)
do 250 i = 1, nInt
muabs(i) = (stoich(1)*muabs1(i) + stoich(2)*muabs2(i))/

118 Code

1 normal
damping(i) = exp(-muabs(i)*elempith)
250 continue
elseif (kElem.eq.ice) then
elempith = elemDens(kElem)*thick
call newmac(hplace, muabs1)
call newmac(oplace, muabs2)
stoich(1) = 2.0*elemWate(hplace)
stoich(2) = elemwate(cplace)
normal = stoich(1) + stoich(2)
do 270 i = 1, nInt
muabs(i) = (stoich(1)*muabs1(i) + stoich(2)*muabs2(i))/
1 normal
damping(i) = exp(-muabs(i)*elempith)
270 continue
elseif (kElem.eq.kramers) then
call krasub(damping)
c Kramers continuum
elseif (kElem.eq.synchro) then
c 10/9/96 addition
bessyEnergy = eCont
* eCont already in param list
boost = boostnorm*(bessyEnergy/bessyEnorm)
sind = thick
c thick takes on the value of detector subtended angle
boostsind = boost*sind
* nominally 0.236
* subtended angle added to param list as \thick\ 10/9/96
sind = boostsind/boost
boostsind2 = boostsind*boostsind
boostcosd = sqrt(boost*boost - boostsind*boostsind)
tand = boostsind/boostcosd
bessyB¯eld = b¯eld
bessyI = current
* bessyncline = 0.
* inclination of ecliptic should be added to param list 10/9/96
* special integration for nonzero bessyncline not implemented 10/9/96
* These values are input parameters from xspec
bessy°uxnorm = °uxconst*(bessyI/bessyInorm)/
1 (((bessyEnergy/bessyEnorm)**3)*(bessyB¯eld/bessyBnorm))
c °ux norm in photons per keV^2 per second
c It is the product of 4*3^(1.5)/(20*Pi^3) and the °ux per kev^2 per sec

Code 119

bessyEcrit = enercrit*
1 ((bessyEnergy/bessyEnorm)**2)*(bessyB¯eld/bessyBnorm)
c synchrotron critical energy in keV
* print *, 'In synchro '
* print *, 'boost, sind, boostsind, boostsind2, boostcosd, tand =',
* 1 boost, sind, boostsind, boostsind2, boostcosd, tand
*
* print *, 'bessyEnorm, bessyBnorm, bessyInorm = ',
* 1 bessyEnorm, bessyBnorm, bessyInorm
*
* print *, 'bessyEnergy, bessyB¯eld, bessyI, bessy°uxnorm = ',
* 1 bessyEnergy, bessyB¯eld, bessyI, bessy°uxnorm
*
* print *, 'bessyEcrit = ', bessyEcrit
call bessy°ux(damping)
* print *, 'i, energy, y, damping = '
* do 401 i = 1,nInt
* print *, i, earray(i), yenergy(i), damping(i)
* 401 continue
c synchrotron radiation
elseif (kElem.eq.e®area) then
call mirror(damping)
c e®ective area of mirror
elseif (kElem.eq.ssdgerm) then
elempith = elemDens(geplace)*thick
call newmac(geplace, muabs)
** print *, 'In ssdgerm,elempith,thick=',elempith,thick
do 300 i = 1, nInt
damping(i) = one - exp(-muabs(i)*elempith)
** print *, i, muabs(i), damping(i)
300 continue
elseif (kElem.eq.fpcp10) then
c P10: Ar 90%, CH4 10%
elemDens(kElem) = (pressure/torr)*stddens*
1 (abzero/(abzero + temper))
elempith = elemDens(kElem)*thick
call newmac(cplace, muabs1)
call newmac(hplace, muabs2)
call newmac(arplace, muabs3)
cargrat = one - argrat
** stoich(1) = 0.2*cargrat*elemWate(cplace)
stoich(1) = cargrat*elemWate(cplace)

120 Code

** stoich(2) = 0.8*cargrat*elemWate(hplace)
stoich(2) = 4.*cargrat*elemWate(hplace)
stoich(3) = argrat*elemWate(arplace)
c argrat is the proportional of Ar in P10
** normal = stoich(1) + stoich(2) + stoich(3)
do 400 i = 1, nInt
** muabs(i) = (stoich(1)*muabs1(i) + stoich(2)*muabs2(i)+
** 1 stoich(3)*muabs3(i))/normal
muabs(i) = (stoich(1)*muabs1(i) + stoich(2)*muabs2(i)+
1 stoich(3)*muabs3(i))
damping(i) = one - exp(-muabs(i)*elempith)
400 continue
elseif (kElem.eq.fpcmeth) then
c methane: CH4
elemDens(kElem) = (pressure/torr)*stddens*
1 (abzero/(abzero + temper))
elempith = elemDens(kElem)*thick
call newmac(cplace, muabs1)
call newmac(hplace, muabs2)
stoich(1) = elemWate(cplace)
stoich(2) = 4.*elemWate(hplace)
** normal = stoich(1) + stoich(2)
do 500 i = 1, nInt
** muabs(i) = (stoich(1)*muabs1(i) + stoich(2)*muabs2(i))/
** 1 normal
muabs(i) = stoich(1)*muabs1(i) + stoich(2)*muabs2(i)
damping(i) = one - exp(-muabs(i)*elempith)
500 continue
elseif (kElem.eq.gnplace) then
call linegauss(damping)
elseif (kElem.eq.unplace) then
c this is an \all-pass\ ¯lter
do 600 i = 1, nInt
damping(i) = one
600 continue
else
elempith = elemDens(kElem)*thick
* print *, \In source, elemDens \, elemDens
* print *, \In source, elemWate \, elemWate
* print *, \In souce, elemThick \, elemThick
* print *, \In source \,kElem,elemDens(kElem),elempith,thick
* print *, \damping in source = \

Code 121

call newmac(kElem, muabs)
do 15 i = 1, nInt
damping(i) = exp(-muabs(i)*elempith)
* print *, i, evArr(i), eArray(i), damping(i), muabs(i)
15 continue
c the default case
endif
return
end

10.0.37 SUBROUTINE trapzd(func,a,b,s,n)
Remark 38 Trapezoidal integration, from Numerical Recipes.

INTEGER n
REAL a,b,s,func
EXTERNAL func
INTEGER it,j
REAL del,sum,tnm,x
if (n.eq.1) then
s=0.5*(b-a)*(func(a)+func(b))
else
it=2**(n-2)
tnm=it
del=(b-a)/tnm
x=a+0.5*del
sum=0.
do 11 j=1,it
sum=sum+func(x)
x=x+del
11 continue
s=0.5*(s+(b-a)*sum/tnm)
endif
return
END
C (C) Copr. 1986-92 Numerical Recipes Software %5'KNp='.

122 Code

Chapter 11
XSPEC

XSPEC is an interactive X-ray spectral-¯tting program which has been widely used
for X-ray spectroscopic analysis in X-ray astronomy. Its considerable evolution history
through a series of X-ray scienti¯c missions is described in a NASA GSFC manual[71].
Its command structure is being augmented and updated at regular intervals. At the
core of XSPEC are the following features:

1. A curve-¯tting engine, which the user may select from the standard XSPEC
Levenberg-Marquardt type routines[5] and the most recently released CERN
¯tting engine. Optimal ¯tting is determined by minimizing Â2 or by maximizing
the likelihood function, the so-called C statistic, producing best-¯t parameters
with goodness-of-¯t con¯dence intervals.

2. A built-in library of generic and astrophysical spectral models each with their
own set of ¯tting parameters. A single model used in the ¯t may consist of
several of these built-in models, in which case the models are known as additive
models. Filters and other absorption layers in the optical train may be included
as multiplicative models, since they multiply into the additive models.

3. A user-selectable instrumental response matrix which describes the spectral
response function of the detector in the experiment. The rows and columns of
this matrix are labeled by X-ray energy values and detector channel numbers
respectively.

4. Simultaneous ¯tting of several data sets with a model whoe parameters can be
di®erent for each data set.

5. Support for FITS detector data and response matrix format, which may be
manipulated with the FTOOLS package, available by anonymous ftp from
legacy.gsfc.nasa.gov.

6. A plotting package (PGPLOT) with device driver support.
7. Freezing (keeping value ¯xed) and thawing (letting value go free) of ¯tted pa-

rameters within prescribed hard and soft limits.

124 XSPEC

8. Optional background subtraction, ignoring of faulty channels or spurious data.

Part V
Appendix

125

Appendix: Solution to a Di®erence-di®erential Equation 127

11.1 Appendix: Solution to a Di®erence-di®erential Equation
We have used as the backbone of our basic fpc model the solution of a system of
di®erence-di®erential equations describing a birth-and-death process

p0n (x) = ¡ [¸(1 + bn) + n¹] pn(x) + (n+ 1)¹pn+1(x) +
¸[1 + b(n ¡ 1)]pn¡1(x) (11.1)

p00 (x) = ¡¸p0(x) + ¹p1(x) (11.2)
where ¸, b¸ and ¹ are all constants. Arley[2](see also Byrne[8]) veri¯ed that the
negative binomial distribution is a solution by direct substitution, and thought that
these equations for general ¹, `cannot be solved elementarily'. On the contrary,
we ¯nd that the solution to these equations gives us the binomial distribution, the
Poisson distribution and the negative binomial distribution (synonymous with the
Polya distribution), all by simply letting the quantity b take on negative, zero and
positive values respectively. The case for b = 0 (Poisson case) is solved in Gross and
Harris[19]. Here we deduce the general solution using the method of characteristics
described in Ince[24]. The standard method of solving these equations is to ¯rst get
rid of the di®erence component by taking its Z-transform[28]. Let the Z-Transform
of the probability distribution pn(t) be de¯ned as

P (z; x) ´
1X
0
pn(x)zn (11.3)

Multiply the di®erence-di®erential equations by the appropriate powers of z
and summing, we get

1X
n=0

p0n (x) zn

= ¡
1X
n=0

[¸(1 + bn) + n¹] pn(x)zn +

¹
1X
n=0

(n+ 1)pn+1(x)zn + ¸
1X
n=1

[1 + b(n¡ 1)]pn¡1(x)zn (11.4)

This equation may then be rewritten as
1X
n=0

p0n (x) zn

= ¡¸
1X
n=0

pn(x)zn ¡ (b¸+ ¹)z
1X
n=1

npn(x)zn¡1 +

128

¹
1X
n=0

(n+ 1)pn+1(x)zn + ¸z
1X
n=1

pn¡1(x)zn¡1 (11.5)

+b¸z2
1X
n=1

npn(x)zn¡1

Since
1X
n=0

pn (x) zn =
1X
n=1

pn¡1 (x) zn¡1 = P (z; x) (11.6)
1X
n=1

npn (x) zn¡1 =
1X
n=0

(n+ 1)pn+1 (x) zn = @P (z; x)
@z (11.7)

and
1X
n=0

_pn (x) zn = @P (z; x)
@x (11.8)

we have
@P (z; x)

@x = (¹¡ ¸bz)(1 ¡ z)@P (z; x)@z ¡ ¸(1¡ z)P (z; x) (11.9)
These so-called Lagrange linear (or planar) partial di®erential equations[24]

may be solved by the method of characteristics. The characteristics are:
dx
1 = dz

¡(1 ¡ z)(¹ ¡ ¸bz) =
dP (z; x)

¡¸(1 ¡ z)P (z; x) (11.10)
This yields by direct integration the two solutions

Ã 1 ¡ z
¹¡ ¸bz

!
e¡(¹¡¸b)x = C1 (11.11)

and
P (z; x)(¹¡ ¸bz) 1b = C2 (11.12)

where C1 and C2 are constants. Since this relationship must be true for all z and
x, there is a functional dependence between the two forms on the left sides of Eqs.
(11.11) and (11.12):

P (z; t)(¹¡ ¸bz) 1b = g
"Ã 1¡ z

¹ ¡ ¸bz
!
e¡(¹¡¸b)x

#
(11.13)

Now when x = 0, the system is empty (no avalanche electrons), that is, p0(0) = 1
and pn(0) = 0 for n > 0. Thus we have

Appendix: Solution to a Di®erence-di®erential Equation 129

P (z; 0) =
1X
n=0

pn(0)zn = 1 (11.14)
and, from Eq.(11.13) , that

g
"Ã 1 ¡ z

¹ ¡ ¸bz
!#

= (¹ ¡ ¸bz) 1b (11.15)

Letting y = ³ 1¡z
¹¡¸bz

´ yields

g(y) =
Ã ¹ ¡ ¸b
1¡ ¸by

! 1
b (11.16)

Hence

g
"Ã 1¡ z

¹¡ ¸bz
!
e¡(¹¡¸b)x

#

= (¹ ¡ ¸bz) 1b
" e¡(¸b¡¹)x(1 ¡ ¹

¸b)
1 ¡ z + (z ¡ ¹

¸b)e¡(¸b¡¹)x
1
b

(11.17)

and

P (z; t) =
" e¡(¸b¡¹)x(1¡ ¹

¸b)
1¡ ¹

¸be¡(¸b¡¹)x ¡ z(1 ¡ e¡(¸b¡¹)x)
1
b

(11.18)
From this generating function, we get the mean

hni = ¡ @ lnP (z; x)
@ ln z

¯̄
¯̄
¯z=1

= ¸(e(¸b¡¹)x ¡ 1)
¸b¡ ¹ (11.19)

Substituting this back into Eq. (11.18), we get

P (z) =
" 1
1 + b hni (1¡ z)

1
b (11.20)

all the x-dependence being contained in the mean hni : This is the generating
function for three well-known distributions: the binomial distribution (b < 0), the
Poisson distribution (b = 0) and the negative binomial distribution (b > 0); which we
exhibit below. In all three cases, the variance is

D¢n2E ´ Dn2E¡ hni2 = @2 lnP (z; x)
@ ln z2

¯̄
¯̄
¯z=1

(11.21)
= hni (1 + b hni) (11.22)

130

11.1.1 Binomial distribution (b < 0)
De¯ning

b ´ ¡(1¡ F)
hni = ¡ 1

nmax
(11.23)

where F is de¯ned to be less than unity to keep b negative, we get the Z-Transform
P (z) = [1¡ (1¡ F) (1¡ z)] hni

1¡F (11.24)
The variance of this is

D¢n2E = F hni (11.25)
from which we identify F to be the Fano factor[16]. If nmax ´ hni

(1¡F) is an integer, we
get the classic binomial distribution for n:

pn = nmax!
n! (nmax ¡ n)!F

nmax¡n(1¡ F)n (11.26)
11.1.2 Case 2. Poisson distribution (b = 0)
In the limit b! 0, we get the Z-transform

P (z) = exp [hni (z ¡ 1)] (11.27)
with variance

D¢n2E = hni (11.28)
The inverse of this Z-transform is the Poisson distribution

pn = hnin
n! e¡hni (11.29)

11.1.3 Case 3. Negative binomial distribution (b > 0)
De¯ning

b ´ 1
h (11.30)

we get the Z-transform

P (z) =
2
4 1
1 + hni

h (1¡ z)

3
5
h

(11.31)

Expanding P (z; t) in a series of z, we get, by reading o® the coe±cients, the negative
binomial distribution often encountered in statistical optics[18]:

Appendix: Solution to a Di®erence-di®erential Equation 131

pn = ¡(n+ h)
¡(h)¡(n+ 1)

hnin hh
(h+ hni)n+h

= ¡(n+ h)
¡(h)¡(n+ 1)

"
1 + h

hni
#¡n "

1 + hni
h

#¡h
(11.32)

where h ´ 1
b is seen to be the parameter representing the number of degrees of freedom

of the negative binomial distribution. The distribution may also be rewritten in the
alternative forms:

pn = hnin
(1 + b hni)n+h hn

h(h+ 1) ¢ ¢ ¢ (n + h¡ 1)
n!

= hnin
(1 + b hni)n+h

1(1 + b) ¢ ¢ ¢ (1 + (n¡ 1)b)
n! (11.33)

and this is the form found in Arley[2]. He had solved the special case of the birth-and-
death equations with death rate ¹ = 0 (pure birth process) by direct substitution of
the negative binomial distribution in the di®erence-di®erential equations, with mean

hni = ¡ @ lnP (z; x)
@ ln z

¯̄
¯̄
¯z=1

= (e¸bx ¡ 1)
b (11.34)

The case b = h = 1, ¹ = 0 is a special pure-birth case still of Arley's solution,
obtained earlier by Furry:

pn = hnin
(1 + hni)n+1 = e¡¸x ³1 ¡ e¡¸x´n (11.35)

132

Part VI
References

133

135

1. G. D. Alkhazov, Statistics of electron avalanches and ultimate resolution of propor-
tional counters, Nucl. Instr. and Meth. 89 (1970), p. 155.

2. N. Arley, On the Theory of Stochastic Processes and Their Application to the Theory
of Cosmic Radiation (Wiley, New York 1948) p. 98.

3. R E. Bellman, R. E. Kalaba and J. A. Lockett, Numerical Inversion of the Laplace
Transform: Applications to Biology, Economics, Engineering and Physics, 1966 Amer-
ican Elsevier, New York.

4. E. Oran Brigham, The Fast Fourier Transform and its Applications, 1988 Prentice-
Hall, Englewood Cli®s.

5. P. R. Bevington, Data Reduction and Error Analyses for the Physical Sciences,
McGraw-Hill.

6. J. J. Bloch, Observations of the soft X-ray di®use background from 0.07 to 1.0 keV,
1988, Thesis, University of Wisconsin-Madison.

7. W. Blum and L. Rolandi, Particle Detection with Drift Chambers, 1994 Springer-
Verlag, Berlin.

8. J. Byrne, Statistics of the electron multiplication process in proportional counters,
Proc. R. Soc. Edinburgh, XVI A 33(1962).

9. SAO AXAF Mission Support, Critical Design Review of the HRMA X-ray Detection
System(HXDS), SAO-AXAF-DR-94-102, October 1994.

10. W. Diethorn, A methane proportional counter system for natural radiocarbon mea-
surements, USAEC Report NY06628 (1956); also doctoral dissertation, Carnegie Inst.
of Technology, 1956.

11. Calibration Group, AXAF Mission Support Team, Smithsonian Astrophysical Ob-
servatory, HXDS Error Budget and Performance Prediction, March 5, 1996.

12. Canberra Nuclear Products Group Catalog, Edition 8, Canberra Nuclear Products
Group, Meriden, CT.

13. G. Chartas, K. Flanagan, J. P. Hughes, E. M. Kellogg, D. Nguyen, M. Zombeck,
M. Joy and J. Kolodziejezak, Correcting X-ray spectra obtained from the AXAF
VETA-I mirror calibration for pileup, continuum background and deadtime. 1992
SPIE Proceedings, Vol. 1742, p. 65.

14. L. G. Christophorou, Atomic and Molecular Radiation Physics, 1971 Wiley, London.
15. U. Fano, 1946 Phys. Rev. 70, 44; Ionization yield of radiations. II. The °uctuations

of the number of ions, 1942 Phys. Rev. 72, 26-29.
16. G. W. Fraser, X-Ray Detectors in Astronomy, Cambridge University Press, Cam-

bridge, 1989, p.48.
17. R. Jenkins, R. W. Gould and D. Gedcke, Quantitative X-ray Spectrometry, 1981

Marcel Dekker, New York.
18. J. Goodman, Statistical Optics, Wiley, New York.
19. D. Gross, C. M. Harris, Fundamentals of Queueing Theory (Wiley, New York 1985).
20. T. E. Harris, The Theory of Branching Processes (Springer-Verlag, Berlin 1963).

136

21. R. W. Hendricks, The gas ampli¯cation factor in xenon-¯lled proportional counters,
Nucl. Instr. Meth. 102, 309(1972).

22. B. L. Henke, E. M. Gullikson and J. C. Davis, X-Ray Ineractions: Photoabsorption,
SCattering, Transmission and Re°ection E = 50¡ 30; 000 eV , Z = 1¡ 92, Lawrence
Berkeley Laboratory Materials Sciences Division preprint, LBL-33908, March 1993.

23. IDL, an interactive data language from RSI, 777 29th Street, Suite 302, Boulder, CO
80303.

24. E. L. Ince, Ordinary Di®erential Equations, 1956 Dover Reprint, New York.
25. H. Inoue, K. Koyama, M. Matsuoka, T. Ohashi, Y. Tanaka, Properties of gas scin-

tillation proportional counters for soft X-rays, Nucl. Instr. and Meth. 157 (1978),
295.

26. K. Jahoda and D. McCammon, Proportional counters as low energy photon detectors,
Nucl. Instr.Meth., 1988, A272, 800.

27. K. Kleinknecht, Detectors for Particle Radiation, 1986 Cambridge University Press,
Cambridge.

28. L. Kleinrock, Queueing Systems, Vol. I, 1975 Wiley, New York.
29. G. F. Knoll, Radiation Detection and Measurement, 1989 Wiley, New York.
30. P. Kokotovic and D. D. Siljak, Automatic analog solution of algebraic equations and

plotting of root loci by generalized Mitrovic method, 1964 IEEE Trans. Appl. Ind.,
83, 324-328.

31. H. H. Kramers, On the theory of X-ray absorption and of the continuous X-ray
spectrum, Phil. Mag. 46, 836 (1923).

32. W. H.-M. Ku and Robert Novick, Gas scintillation proportional counters and other
low-energy X-ray spectrophotometers, in Low Energy X-ray Diagnostics | 1981, 1981
American Institute of Physics, New York, 78 - 84.

33. Loeb, Gaseous electronics, Dover
34. G. Nicolis and I. Progogine, Self-organization in nonequilibrium systems (Wiley, NY,

1977).
35. A. V. Oppenheim and R. W. Schafer, Digital Signal Processing (Prentice-Hall, En-

glewood Cli®s 1975), p. 206.
36. S. D. Personick, Statistics of a general class of avalanche detectors with applications

to optical communication, 1971 BSTJ, 50, 10, 3075-3095.
37. Courtesy Diab Jerius and Richard Edgar, SAO.
38. J. R. Prescott, Photomultiplier single-electron statistics and the shape of the ideal

scintillation line, Nucl. Instr. and Meth., 122, 1963, p. 256.
39. H. Raether, Electron avalanches and breakdown in gases, 1964 Butterworth, London.
40. L. Reimer, Scanning Electron Microscopy (Springer-Verlag, Berlin, 1985, p. 204..
41. P. Rice-Evans, Spark, Streamer, Proportional and Drift Chambers, 1974, Richelieu

Press, London., p. 77 and p. 256.
42. M. E. Rose and S. A. Kor®, Phys. Rev. 59, 850(1941).

137

43. B. B. Rossi and H. H. Staub, Ionization Chambers and Counters: Experimental
Techniques, 1949 McGraw-Hill, New York.

44. B. A. Saleh and M. C. Teich, Fundamentals of Photonics, 1991 Wiley, New York,
p.649.

45. E. Tsiang, Modeling the AXAF proportional counters for ground calibration, June
12 1996.

46. E. Tsiang, Modeling the AXAF Proportional Counters for Ground Calibration of
the X-Ray Detector System II: escape peaks, incomplete charge collection and pileup
e®ects.

47. E. Tsiang, Synchrotron radiation °ux through a circular aperture and the determi-
nation of the absolute quantum e±ciency, SAO Memo February 2, 1996.

48. E. Tsiang, Dead time and pileup, SAO Memo January 4, 1996.
49. E. Tsiang, Special adaptation of the JM model to analyze HIREFS data, SAO Memo

January 5, 1996.
50. E. Tsiang, A Proposed New Spectral Fitting Program for HXDS, SAO Memo May

25, 1995.
51. E. Tsiang, A new closed-form expression for the Jahoda-McCammon distribution

without di®usion losses, SAO Memo July 20, 1995.
52. E. Tsiang, Numerical inversion of the Jahoda-McCammon moment generating func-

tion without di®usion losses, SAO Memo July 27, 1995.
53. E. Tsiang, Numerical inversion of the Prescott moment generating function and com-

parison with Prescott function, Fortran Inversion Routine of JM mgf for XSPEC,
SAO Memo August 3, 1995.

54. E. Tsiang, XSPEC, SAO Memo August 10, 1995.
55. E. Tsiang, Detector response determination using XSPEC, August 17, 1995.
56. E. Tsiang, Line ¯tting using the JM model in XSPEC, the JM-Kramer continuum

model, SAO Memo August 24, 1995.
57. E. Tsiang, .Escape corrections, line and continuum, SAO Memo September 5, 1995.
58. E. Tsiang, SSD pdfs | Hypermet functions and alternatives, SAO Memo October 5,

1995.
59. E. Tsiang, FPC data reduction | ¯rst results using XSPEC, SAO Memo October

19, 1995.
60. E. Tsiang, Preliminary analysis of FPC and SSD data using XSPEC, SAO Memo

November 2, 1995.
61. E. Tsiang, More preliminary analysis of FPC data using XSPEC, SAO Memo

Novembr 15, 1995.
62. E. Tsiang, A modi¯cation to the JM and Prescott probability density functions, SAO

December 21, 1995.
63. E. Tsiang, The physics behind the Polya Distribution in the JM model, SAO Memo

December 28, 1995.

138

64. E. Tsiang, The physics behind the Polya Distribution in the JM model, SAO Memo
January 29, 1996.

65. E. Tsiang, Spectral Fitting Program for FPC{Modi¯cation of existing program, Rev.
0.3, SAO Memo June 12, 1996.

66. B. Wargelin, Primary HRMA Calibration Objectives at the X-ray Calibration Facility
(XRCF), SPIE poster session, 1996.

67. B. Wargelin, private communication.
68. B. Wargelin, SAO Internal Memo, "So what's new with the FPC", March 1, 1996.
69. M. C. Weisskopf, Advanced Astrophysics Facility AXAF: an overview (Proc. SPIE

2515, 1995), p. 312.
70. E. M. Williams, The Physics and Technology of Xerographic Processes, 1984 Wiley,

New York.
71. NASA Goddard Space Flight Center, XSPEC, an X-ray spectral ¯tting package,

user's guide.
72. P. Zhao, E. M. Kellogg, D. A. Schwartz and Y. Shao, Intensity distribution of the

X-ray source for the AXAF VETA-I mirror test, 1992 SPIE Vol. 1742, 26 - 39.

