Chandra Observations of Powerful Relativistic Jets in AGN

Dan Schwartz High Energy Astrophysics Division LUNCH TALK 2005 March 02

INTRODUCTION

- What Do Jets Do?
 - Carry large quantities of energy, to feed radio lobes
 - Significant part of black hole energy generation budget
 - Interact with gas in galaxies and clusters of galaxies

INTRODUCTION

- What Do Jets Do?
 - Carry large quantities of energy, to feed radio lobes
 - Significant part of black hole energy generation budget
 - Interact with gas in galaxies and clusters of galaxies
- What Do We Want to Learn
 - Particle composition and acceleration
 - Jet acceleration and collimation

INTRODUCTION

- What Do Jets Do?
 - Carry large quantities of energy, to feed radio lobes
 - Significant part of black hole energy generation budget
 - Interact with gas in galaxies and clusters of galaxies
- What Do We Want to Learn
 - Particle composition and acceleration
 - Jet acceleration and collimation
- Why Do We Need X-Ray Data?
 - Spectral Energy Distribution (SED) gives mechanism
 - Particle lifetimes change with observed band

Outline

1. Observations of Quasar Jets

- Quasar jets are relativistic.
- X-ray surveys of Jets
- 2. Interpretation as IC/CMB

3. Parameters and Implications

Outline

1. Observation of Quasar Jets

- 2. Interpretation as IC/CMB
 - Energy densities: B² vs. kT(1+z)⁴
 - Broadband SED
 - Profiles

3. Parameters and Implications

Outline

1. Observations of Quasar Jets

2. Interpretation as IC/CMB

3. Parameters and Implications

- **B**, δ , γ_{\min}
- Kinetic Flux
- Beacons at Large Redshift

Siemiginowska et al., 2003ApJ...598L..15S

The Jet Sample

- Flat Spectrum Quasars. Two Samples: $S_{5GHz} > 1Jy^a$ or $S_{2.7GHz} > 0.34 Jy^b$
- Radio Maps with< 2"resolution have jets >2" with detection expected by analogy to PKS 0637-752.

A Survey for X-ray Jets – Cycle 5

PKS 0208-512

Spectral Energy Distribution often indicates against Synchrotron X-rays

Spectral Energy Distribution often indicates against Synchrotron X-rays

Sambruna et al., 2002ApJ...571..206S

Spectral Energy Distribution often indicates against Synchrotron X-rays

Inverse Compton Xrays from the CMB:

 $\gamma_x \approx 10^{2-3}$ $\gamma_r \approx 10^{4-5}$

Some kpc scale jets may be detectable by GLAST, at 10^{-13} to 10^{-12} ergs cm⁻² s⁻¹

Sambruna et al., 2002ApJ...571..206S

mmueller 4–Dec–2004

Confront IC/CMB with Morphology

Confront IC/CMB with Morphology

Confront IC/CMB with Morphology

Siemiginowska et al. 2002 ApJ...570..5438 PKS 1127-145 at z=1.187

Naive Models

The intersection gives a solution for the magnetic field, B, in the rest frame, and for the apparent Doppler factor,

$$\delta = (\Gamma(1 - \beta \cos(\theta))^{-1}.$$

Uncertainties in the Magnetic Field Estimates

Equipartition

Uncertainties in the Magnetic Field Estimates

Equipartition

Inverse Compton

• Determined B and δ within a factor of ≈ 2

Kinetic Flux

Energy in Protons?

- Large symbols assume $U_p = U_e$
- Lower symbols assume pure e[±] plasma
- Upper symbols assume cold protons, $n_p=n_e$, and $<\gamma>_e = 183$

Implications of the AGN Jets

- Eddington Luminosity might not limit Accretion Rate
- Jets may Power Cluster Cavities Stop Cooling Flows
- IC/CMB X-ray jets Maintain Constant Surface Brightness vs. z. We will detect them at Arbitrarily Large Redshift.

Where ARE the bright X-ray Jets at High Redshift?

- Unidentified ROSAT sources?
- Bright ROSAT, ASCA, EINSTEIN quasar identifications?
- Extreme X-ray/Optical sources (Koekemoer et al. 2004ApJ...600L.123K) in Chandra Deep Surveys?

Anonymous ROSAT source

Anonymous ROSAT source

Quasar 1715+2145

VLA 1.425GHz

Anonymous ROSAT source

An Einstein and ASCA source

Cheung,2004 ApJ.:::600L..23C

Two more High Redshift X-ray Jets: Cheung et al. Poster 1613

PMN J2219-2719 at z=3.634

There Could Be Radio Quiet X-Ray Jets!

- 1 keV X-rays produced by $\gamma \approx 1000/\Gamma$
- $v = 4.2 \times 10^{-6} \gamma^2 \text{ H}[\mu\text{G}]$ $\approx 10 \text{ MHz}$

There Could Be Radio Quiet X-Ray Jets!

- 1 keV X-rays produced by $\gamma \approx 1000/\Gamma$
- $v = 4.2 \times 10^{-6} \gamma^2 \text{ H}[\mu\text{G}]$ $\approx 10 \text{ MHz}$
- Age $\approx 3 \times 10^4$ years?

Correlation of X-ray Jet and Radio Flux Densities

Significance of the X-ray Emission

- **1. X-rays dominate power radiated by jet**
- 2. SED through X-ray band provides clues to structure.
 - Acceleration sites
 - Deceleration of bulk motion
 - Proton content

Significance of the X-ray Emission If emission is inverse Compton on the Cosmic Microwave Background

- 3. X-rays give the effective Doppler factor, rest frame B, and electron γ_{min}
- 4. X-ray jets will be detectable at arbitrarily large redshift!