NuSTAR the Nuclear Spectroscopic Telescope Array

Daniel Stern, Project Scientist

(Jet Propulsion Laboratory, California Institute of Technology)

Chandra's 1st Decade of Discovery Boston, 2009 September

Launch Schedule

/ contraction and a	2004	2005	2006	2007	2008	2009	2010 I	2011	2012	2013	2014	2015
	4	SWIFT 11/04	THEMIS 2/07	^		WISE 11/09						
GALEX 4/03				AIM 4/07	6/08		(NuStar 8/11	5MEX-12 8/12	SMEX-13 11/13	3	SMEX-1 9/15
^												
	4/03	GALEX 4/03	GALEX 4/03	GALEX 4/03	▲ 11/04 2/07 ▲ AIM 4/07 ▲	▲ 11/04 2/07 IBEX IBEX AIM 4/07 ▲ 6 ^{/08} ▲	▲ 11/04 2/07 11/09▲ IBEX IBEX AIM 4/07 ▲ 6/08▲ 109▲	▲ 11/04 2/07 11/09▲ IBEX IBEX AIM 4/07 ▲ 6/08▲ 109▲	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

SMEX: Small Explorer competitively selected in 2004 reinstated by NASA in November 2007 confirmed in August 2009

NuSTAR will be the first focusing hard X-ray satellite

Coded Aperture Optics: high background, large detector Focusing Optics: low background, compact detector

NuSTAR Hardware

GSFC: optics slumping >50% of flight substrates produced similar to Con-X/IXO process measured figure 20-30 arcsec

ATK/Goleta: extendable mast fully deployed flight mast

Caltech: focal plane CdZnTe detectors

Copenhagen (DTU-Space): optics coating depth graded Pt/SiC and W/Si coatings

Columbia: optics assembly expected performance ~45 arcsec

Energy Range:	6-80 keV				
Angular Resolution:	45 arcsec (HPD)				
Field of View:	12 x 12 arcmin				
Spectral Resolution:	1.2 keV at 68 keV 600 eV at 6 keV				
Sensitivity (3σ, I Ms):	2 x 10 ⁻¹⁵ erg/cm ² /s (6-10 keV) 1 x 10 ⁻¹⁴ erg/cm ² /s (10-30 keV)				
Timing Resolution:	l msec				
ToO Response:	<24 hr				
Launch Date:	August 2011				
Orbit:	5 degree inclination 550 km x 600 km				
Mission Lifetime: Orbit Lifetime:	2 years baseline >7 years orbit lifetime				
	current best estimates (CBEs)				

current best estimates (CBEs), as of September 2009

INTEGRAL

NuSTAR

2x2 degrees, 20-40 keV 1.5 month w/ IBIS 2x2 degrees simulated NuSTAR image

NuSTAR Baseline Science Plan (2 yr)

Objective #1: How are black holes distributed through the cosmos, and how do they affect the formation of galaxies?

Objective #2: How are stellar remnants distributed within the Galaxy and near the Galactic center?

Objective #3: How do stars explode and forge the elements that compose the Earth?

Objective #4: What powers the most extreme active galactic nuclei?

~6 months of unallocated science observing time in first 2 years: for ToO's, additional programs, and/or to respond to primary program

Objective #I: Extragalactic Surveys

- peaks at ~30 keV
 - constrains the accretion history of the universe, e.g., the formation history of supermassive black holes
- requires a population of heavily obscured AGN

Ueda et al. 2003, ApJ, 598, 886

Objective #I: Extragalactic Surveys

pluses = Chandra Deep Fields/GOODS diamond = XMM Lockman Hole

Objective #I: Extragalactic Surveys

XBoötes Field 8.5 deg² COSMOS Field I-2 deg² GOODS Fields 300 arcmin² ~50% of CXB

Objective #2: Galactic Surveys

NuSTAR simulation of the Galactic center 2° x 0.8° (M. Muno)

Objective #3: Supernova Survey

Kepler

SN 1987A

Tycho

NuSTAR will map historic SNe

⁴⁴Ti lines at 68 and 78 keV provides important, new diagnostics

<24 hr ToO capability to observe Galactic core
collape SNe and SNe la out to Virgo, should they
occur during the lifetime of the mission</pre>

Cassiopeia A

Cassiopeia A

Radio wave (VLBI)

Infrared radiation (Spitzer)

Visible light (Hubble)

Expanding shell slams into surrounding medium at supersonic speed. Heats up and glows.

Low-energy X-ray (Chandra)

Objective #4: Blazar Monitoring

NuSTAR will conduct coordinated surveys with the Fermi Gamma-Ray Telescope and ground-based TeV telescopes to provide temporal tomography of nature's most powerful particle accelerators

NuSTAR X-ray (keV)

Fermi γ-ray (MeV-GeV)

HESS, Veritas γ-ray (TeV)

Other Potential Programs

****** Particle acceleration in the solar corona

****** Axion decay in the Sun

We want the set of th

% Galactic TeV sources

Weightson Weightson Service Pulsar wind nebulae

Selectic black holes in quiescence

X-ray bursters

% Cyclotron lines in X-ray pulsars

Magnetars

Weights With the second seco

****** Non-thermal emission from galaxy clusters

****** Dark matter annihilation signatures

INTEGRAL sources

i etc....

as of September 2009

Flight mast deployment test