The True Nature of Cygnus X-3's “Little” Friend

Michael L. McCollough
Smithsonian Astrophysical Observatory

Abstract

In 2006, Chandra observations of Cygnus X-3 revealed our best view to date of an unique feature associated with this well known microquasar. Extended emission located 16" from Cygnus X-3 has been varying in longitude with Cygnus X-3. Also from previous Chandra observations it is shown that the total flux from the feature varies with Cygnus X-3's total flux. If both this feature and Cygnus X-3 lie at the same distance the separation between the two would be 2.4 light years and assume a distance of 9 kpc.

From a study of the spectra, flux and time variations of this feature we believe that this feature is a dust cloud that is located along our line of sight to Cygnus X-3. From these observations we are able to deduce the location, size, and properties of the cloud. We will present this analysis and the insights that this gives us into the nature of Cygnus X-3 and its environment. We will also present models which will explain why this phenomenon has only been observed, by Chandra, for one X-ray binary. This object represents a discovery that was only possible due to the unprecedented spatial resolution that is only possible with Chandra.

Introduction

Cygnus X-3 is an unusual X-ray binary containing a compact object and a Wolf-Rayet (WR) companion, making it a high mass system. Its orbital period (4.8 hrs) is typical for a low mass system. It is a strong radio source routinely producing radio flares of over 4 Jy and up to ~20 Jy. Even during radio quiescence it can be relatively bright in the radio (500 Jy). It has been shown to produce radio jets and also demonstrates correlations of the radio with both the X-ray and hard X-ray (McCollough et al. 1999, Szostek et al. 2008). Using Chandra observations, taken in 2000, extended X-ray emission was discovered associated with Cygnus X-3 (Heindl et al. 2003). Their analysis pointed to this feature as being a jet impact region. In 2006 a longer Chandra mission (1999 to present).

Phase Relationship with Cygnus X-3

An examination of the temporal properties of the feature show that there is a phase relationship between it and Cygnus X-3. This can be seen in the "phase" image in Fig. 4. In this image events of certain phases were assigned color and combined to form a color coded phase image. The bands were: red: 0.3-0.63, green: 0.63-0.96, and blue: 0.96-0.3. Note the blue color of the feature. This indicates that both of the photons are arriving in the 0.96-0.3 phase range. It is also important to note that no background subtraction was done and hence there is no issue with the background subtraction creating a false time/phase variation of the feature. In Fig. 5 are two images made at phase minimum and maximum for the feature.

In Fig. 6 is the phase folded light curves of the halo (due to Cygnus X-3's PSF) and the feature. It can clearly be seen that the feature exhibits the same slow rise and rapid drop that one sees in Cygnus X-3 but with a phase lag. From this one can see that the peaks of a cross correlation between the background and the feature a phase lag of 0.551 ± 0.003 is found. It should be noted that all of the Chandra data sets show an anti-correlation between the light curve of the feature and background.

The "Little" Friends Spectrum (Scattering)

A natural explanation for the time variable behavior of the feature is that it is due to scattering from the cloud between Cygnus X-3 and the observer. If this is the case the spectrum of the feature should be Cygnus X-3's spectrum modified by being scattered. Scattering will modify the spectrum at high energies by A(E)^-2 reduction and at the low energies there will be additional absorption (N_H caused by the cloud and multiple scattering). Cygnus X-3's X-ray spectrum shows a photospheric spectrum whose continuum can be described by a modified partial covered disk blackbody. Using this Cygnus X-3's spectrum modified by scattering we get an excellent fit (see Fig. 7).

Nature of the Beast

The most natural explanation the temporal behavior, spectrum, and extent of this feature is that it represents Cygnus X-3's scattered emission off of a cloud. Some of interesting implications:

Time Delay: If the time delay between the feature and Cygnus X-3 is a result of scattering then this feature has be be within 2 kpc of Cygnus X-3. Flux: Using the ratio between the feature and Cygnus X-3 assuming the flux is that scattered from Cygnus X-3 the feature at a distance ~2 kpc.

Solution

If we consider the mass donating companion in Cygnus X-3 we can come to an understanding of what we are observing. The mass donating companion is a WR star which has high mass outflow (which is indicated in observations of Cygnus X-3) form a wind blow shell (WR stars typically produce 1-10 pc radii shells) about the star like the one shown in Fig. 8. Thus for Cygnus X-3 the ‘little’ friend is simply a thin dust layer in the shell of a wind blown nebula surrounding Cygnus X-3. Also the fact that this has only been seen for Cygnus X-3 is also explain by the studies that have shown that we should only expect only one such system like Cygnus X-3 in our Galaxy at a given time. So the X-rays from the compact object are “x-raying” the structure of the surrounding nebula.

The “Little” Friends Spectrum (Simple Fits)

Choosing an optimized extraction region the feature yields a spectrum of 9000 counts which is shown in Fig. 7. Several different simple fits yield good fits:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux</td>
<td>6.4 x 10^-10 cm^-2 s^-1</td>
</tr>
<tr>
<td>Temperature</td>
<td>2.04 keV</td>
</tr>
<tr>
<td>Normalization</td>
<td>2.00</td>
</tr>
<tr>
<td>A</td>
<td>2.00</td>
</tr>
</tbody>
</table>

A Raymond-Smith or Mekal model does not fit the spectrum well.

As all these fits point to a heavily absorbed source (factor of 2.5 times greater than Cygnus X-3) and have a very soft/steep spectrum. The softness of the spectrum and the location of the feature relative the direction of jets observed in this system are difficult to reconcile with a jet impact or beamed emission model for this feature.

Chandra Observations

In early 2006 Cygnus X-3 entered into a radio/hard X-ray quenched state (X-3) and have a very soft/steep spectrum. The softness of the spectrum and the location of the feature relative the direction of jets observed in this system are difficult to reconcile with a jet impact or beamed emission model for this feature.

Observations

In early 2006 Cygnus X-3 entered into a radio/hard X-ray quenched state (X-3) and have a very soft/steep spectrum. The softness of the spectrum and the location of the feature relative the direction of jets observed in this system are difficult to reconcile with a jet impact or beamed emission model for this feature.

Nature of the Beast

The most natural explanation the temporal behavior, spectrum, and extent of this feature is that it represents Cygnus X-3's scattered emission off of a cloud. Some of interesting implications:

Time Delay: If the time delay between the feature and Cygnus X-3 is a result of scattering then this feature has be be within 2 kpc of Cygnus X-3. Flux: Using the ratio between the feature and Cygnus X-3 assuming the flux is that scattered from Cygnus X-3 the feature at a distance ~2 kpc.

Solution

If we consider the mass donating companion in Cygnus X-3 we can come to an understanding of what we are observing. The mass donating companion is a WR star which has high mass outflow (which is indicated in observations of Cygnus X-3) form a wind blow shell (WR stars typically produce 1-10 pc radii shells) about the star like the one shown in Fig. 8. Thus for Cygnus X-3 the ‘little’ friend is simply a thin dust layer in the shell of a wind blown nebula surrounding Cygnus X-3. Also the fact that this has only been seen for Cygnus X-3 is also explain by the studies that have shown that we should only expect only one such system like Cygnus X-3 in our Galaxy at a given time. So the X-rays from the compact object are “x-raying” the structure of the surrounding nebula.

The “Little” Friends Spectrum (Simple Fits)

Choosing an optimized extraction region the feature yields a spectrum of 9000 counts which is shown in Fig. 7. Several different simple fits yield good fits:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux</td>
<td>6.4 x 10^-10 cm^-2 s^-1</td>
</tr>
<tr>
<td>Temperature</td>
<td>2.04 keV</td>
</tr>
<tr>
<td>Normalization</td>
<td>2.00</td>
</tr>
<tr>
<td>A</td>
<td>2.00</td>
</tr>
</tbody>
</table>

A Raymond-Smith or Mekal model does not fit the spectrum well.

As all these fits point to a heavily absorbed source (factor of 2.5 times greater than Cygnus X-3) and have a very soft/steep spectrum. The softness of the spectrum and the location of the feature relative the direction of jets observed in this system are difficult to reconcile with a jet impact or beamed emission model for this feature.

Chandra Observations

In early 2006 Cygnus X-3 entered into a radio/hard X-ray quenched state (X-3) and have a very soft/steep spectrum. The softness of the spectrum and the location of the feature relative the direction of jets observed in this system are difficult to reconcile with a jet impact or beamed emission model for this feature.

Nature of the Beast

The most natural explanation the temporal behavior, spectrum, and extent of this feature is that it represents Cygnus X-3's scattered emission off of a cloud. Some of interesting implications:

Time Delay: If the time delay between the feature and Cygnus X-3 is a result of scattering then this feature has be be within 2 kpc of Cygnus X-3. Flux: Using the ratio between the feature and Cygnus X-3 assuming the flux is that scattered from Cygnus X-3 the feature at a distance ~2 kpc.

Solution

If we consider the mass donating companion in Cygnus X-3 we can come to an understanding of what we are observing. The mass donating companion is a WR star which has high mass outflow (which is indicated in observations of Cygnus X-3) form a wind blow shell (WR stars typically produce 1-10 pc radii shells) about the star like the one shown in Fig. 8. Thus for Cygnus X-3 the ‘little’ friend is simply a thin dust layer in the shell of a wind blown nebula surrounding Cygnus X-3. Also the fact that this has only been seen for Cygnus X-3 is also explain by the studies that have shown that we should only expect only one such system like Cygnus X-3 in our Galaxy at a given time. So the X-rays from the compact object are “x-raying” the structure of the surrounding nebula.

The “Little” Friends Spectrum (Simple Fits)

Choosing an optimized extraction region the feature yields a spectrum of 9000 counts which is shown in Fig. 7. Several different simple fits yield good fits:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux</td>
<td>6.4 x 10^-10 cm^-2 s^-1</td>
</tr>
<tr>
<td>Temperature</td>
<td>2.04 keV</td>
</tr>
<tr>
<td>Normalization</td>
<td>2.00</td>
</tr>
<tr>
<td>A</td>
<td>2.00</td>
</tr>
</tbody>
</table>

A Raymond-Smith or Mekal model does not fit the spectrum well.

As all these fits point to a heavily absorbed source (factor of 2.5 times greater than Cygnus X-3) and have a very soft/steep spectrum. The softness of the spectrum and the location of the feature relative the direction of jets observed in this system are difficult to reconcile with a jet impact or beamed emission model for this feature.