Modeling the Dynamical and Radiative Evolution of a Pulsar Wind Nebula inside a Supernova Remnant

Joseph Gelfand (NYUAD / NSF)

Patrick Slane (CfA), Weiqun Zhang (NYU) arxiv:0904.4053

What is a Pulsar Wind Nebula?

- Electromagnetic forces accelerate charges off neutron star surface ("pulsar wind")
 - Escape magnetosphere along open field lines
- Confinement by surrounding terminates, shocks wind
- Shocked pulsar wind inflates "Pulsar Wind Nebula"

(Credit: NASA/CXC/ASU/J.Hester et al.; NASA/ESA/ASU/J.Hester & A.Loll; NASA/JPL-Caltech/Univ. Minn./R.Gehrz)

Why study a Pulsar Wind Nebula inside a Supernova Remnant?

- Neutron Star
 - Initial Spin Period and Spindown Luminosity
 - Spin-down Timescale
 - Braking Index
- Pulsar Wind
 - Fraction of energy in magnetic field, electrons, and ions
 - Acceleration mechanism: minimum and maximum particle energy, energy spectrum
- Progenitor Supernova
 - Ejecta Mass
 - Initial Kinetic Energy

(Credit: NASA/CXC/Eureka Scientific/M.Roberts et al.; NRAO/AUI/NSF)

Schematic of a Pulsar Wind Nebula inside a Supernova Remnant

Example: Crab Nebula

- Dynamical Properties
 - PWN Radius
 - Expansion Velocity
 - Termination Shock Radius
- Radiative Properties
 - Radio Luminosity and Spectral Index
 - X-ray Luminosity and Spectral Index

Best Fit: Single Power-law Injection Spectrum

- Best-fit parameters from MCMC fit
 - Pulsar Wind Properties

Magnetization $\eta_B = 0.05_{-0.03}^{+0.1}$ Electron Injection Energy 60 GeV – 600 TeV Injection Power Law index 2.5 ± 0.2

Supernova Explosion

Ejecta Mass = $8 \pm 1 M_{\odot}$

Initial KE = $0.6_{-0.2}^{+2.0} \times 10^{51}$ ergs

Low density (n < 1 cm⁻³) environment

Best Fit: Single Power-law Injection Spectrum

Quantity	Observed	Predicted
R _{pwn}	1.5-2.0 pc	1.3 pc
V _{pwn}	1125 –1500 km/s	1570 km/s
Termination Shock Radius	0.14 pc	0.12 pc
Radio Luminosity	1.8×10 ³⁵ ergs/s	1.76×10 ³⁵ ergs/s
Radio Spectral Index	-0.26	+0.1
X-ray Luminosity	1.3×10 ³⁷ ergs/s	1.0×10 ³⁷ erg
X-ray Photon Index	2.1 (1.8 – 3)	2.26

Crab Nebula: Maxwellian + Power-Law Injection Spectrum

Quantity	Observed	Predicted
R _{pwn}	1.5-2.0 pc	1.3 pc
V _{pwn}	1125 –1500 km/s	1600 km/s
Termination Shock Radius	0.14 pc	0.12 pc
Radio Luminosity	1.8×10 ³⁵ ergs/s	1.83×10 ³⁵ ergs/s
Radio Spectral Index	-0.26	-0.30
X-ray Luminosity	1.3×10 ³⁷ ergs/s	1.4×10 ³⁷ erg
X-ray Photon Index	2.1 (1.8 – 3)	2.2

Crab Nebula: Maxwellian + Power-Law Injection Spectrum

Future Directions

- Distinguish between injection scenarios
- Better incorporate results form multi-D simulations
 - Magnetic field structure
 - Growth and effect of instabilities
- Apply model to other systems
 - Thank you Chandra!

Back up slides

Model Limitations and Advantages

Model Limitations:

- Can not reproduce morphological features inside the PWN (e.g. jets and torus)
- Can not reproduce spectral variations inside PWN
- Can only estimate effect of instabilities (e.g. Raleigh-Taylor) on PWN.

Dynamical and Radiative Evolution for a Trial Set of Parameters

- Neutron Star properties:
 - E₀ = 10⁴⁰ ergs/s
 - τ_{sd} = 500 years
 - **p** = 3
 - **v**_{psr} = 120 km/s
- Pulsar Wind properties:
 - $\eta_e = 0.999, \ \eta_B = 0.001, \ \eta_i = 0$

•
$$E_{min} = 511 \text{ keV},$$

 $E_{max} = 500 \text{ TeV},$
 $\gamma_e = 1.6$

Evolutionary Model for a Pulsar Wind Nebula Inside a Supernova Remnant

Importance of Injection Spectrum

Single Power Law unlikely to be correct faxwellian + Power law 10.00 **SNR Radius** Two component models: Radius [pc] 1.00 Broken Power-law Maxwellian + Power-law 0.10 Two power-laws? **PWN Radius** Very different spectral 0.01 and **dynamical** 1000 100 10000 Time [years] evolution (Gelfand et al., in prep.) 102 Frequency [H:]